
MULTISCALE MODELING OF
DIFFUSION PROCESSES IN

DENDRITES AND DEDRITIC SPINES

by

Fredrik Eksaa Pettersen

Thesis

for the degree of

Master of Science

Faculty of Mathematics and Natural Sciences
University of Oslo

June 2014

Contents

1 Introduction 5
1.1 The project . 6
1.2 Progress of the project . 7
1.3 What is computational neuroscience 8

2 Some Theory 11
2.1 Notation . 12
2.2 Physical scope . 13
2.3 Introduction to random walks 13

2.3.1 Random walkers and Gaussian distribution 13
2.3.2 More general Random Walks 17
2.3.3 Choosing random walk algorithm 19
2.3.4 Random walks and anisotropy 19
2.3.5 Random walks and drift 20
2.3.6 Pseudo-random numbers 22

2.4 Some words about partial differential equations 23
2.4.1 Finite Difference Methods 23
2.4.2 Discretizing . 23
2.4.3 Stability . 27
2.4.4 Truncation error . 28
2.4.5 Tridiagonal linear systems 30

2.5 Combining the two solvers . 33
2.5.1 Changing between length scales 33
2.5.2 The algorithm . 34
2.5.3 Convergence rate . 35
2.5.4 Potential problems or pitfalls 36
2.5.5 Relating step length to PDE time step 38

2.6 Geometry . 40

iii

iv Contents

3 Analysis 43
3.1 Introduction . 45

3.1.1 The error estimate . 45
3.1.2 Verification techniques 45

3.2 Verification of PDE solvers . 47
3.2.1 Manufactured Solutions 47
3.2.2 Convergence Tests . 49
3.2.3 Exact numerical solution 52

3.3 Testing the Random walk implementation 59
3.4 Testing the combined solution 63

3.4.1 A simplified version of the algorithm 63
3.4.2 Introducing walkers . 65
3.4.3 Increasing the time step and the relative size of walk-area 66

4 Software 69
4.1 About . 70

4.1.1 Limitations . 71
4.2 Adaptivity . 71
4.3 Computational cost . 71

4.3.1 Memory . 72
4.3.2 CPU time . 72
4.3.3 Parallelizability . 73
4.3.4 Some fancy title about changing stuff 73

4.4 Numerical model . 74
4.4.1 Parameters . 75

5 Results 79
5.1 Validity of the model . 80
5.2 Diffusion times into spines . 80

6 Discussion 83
6.1 Properties of the model . 84

6.1.1 Mass conservation . 84
6.1.2 Coupling between length scales 85

6.2 The results . 85

7 Conclusion 87
7.1 Workflow . 88
7.2 The model . 88
7.3 Future work . 88

7.3.1 PDE solver . 89

Contents v

7.3.2 Lower scale models . 90

A Appendix 93
A.1 Various calculations . 94

A.1.1 Backward Euler scheme in 2D 94
A.2 Debugging . 95

A.2.1 Compiler/syntax errors 96
A.2.2 Segmentation faults . 96
A.2.3 Finite difference methods 97
A.2.4 Random walk and Monte Carlo methods 98
A.2.5 The developed software 99
A.2.6 When you cannot find the bug 100

List of Figures

2.1 Algorithm . 35
2.2 Workaround for negative concentrations, illustration 37

3.1 Numerical errors illustration 44
3.2 Error plot for 1D Forward Euler scheme 48
3.3 Verification of anisotropic diffusion equation implementation . 49
3.4 Convergence tests in 1D . 50
3.5 Convergence test FE 2D . 51
3.6 Verification of spatial derivative 52
3.7 Verification for exact numerical solution 55
3.8 Numerical exact error plot FE in 2D 56
3.9 Numerical exact errorplot for BE scheme 58
3.10 Numerical exact errorplot for BE scheme in 2D 59
3.12 Test RW . 63
3.13 Error test for BE combined with RW in 1D 66
3.14 Error for 1D BE scheme with to few walkers 67
3.15 Effects of increasing relative size of walk area 67
3.16 Effect of increasing time step 68

5.1 Diffusion times with least squares fit 81
5.2 Diffusion time for long necked spines 81

1

List of Abbreviations

BE Backward Euler

CNS Central Nervous System

DSMC Direct simulation Monte Carlo

FDM Finite Difference Methods

FE Forward Euler

FLOPs Floating Point Operations Per second

LTD Long-term depression

LTP Long-term potentiation

MC Monte Carlo

PDE Parital Differential Equation

PKCγ protein kinase Cγ

PSD Post Synaptic Density

RNG (pseudo) random number generator

3

Chapter 1

Introduction

5

6 Introduction Chapter 1

This chapter describes both the scope of this project and the various
places where a lot of time was spent.

1.1 The project

In the fall of 2014 a new interdisciplinary research project on brain plasticity
will start at the University of Oslo and will include people from biology,
neuroscience, statistical mechanics and applied mathematics among others.
There are many processes in the brain which are difficult to describe in any
methodology, and in that manner behave as meso-scale processes. Processes
which are on a length scale between continuum and statistical mechanics.
Today, there are some alternatives which might be plausible alternatives for
modeling such processes, namely molecular dynamics and various offspring of
this like direct simulation Mote Carlo. Both of which possess a few problems.

Molecular dynamics seek to model systems of atoms or molecules by New-
tonian mechanics in the sense that each particle is affected by some well
known potential which in turn lets us calculate the forces on the particle, and
integrate the position. Though these calculations are a viable alternative in
many applications, like nanoporous fluid flow, they suffer from the weakness
of immense computational cost and can only effectively model something
like a few cubic micrometers. More importantly, they are limited to small
molecules like SiO2 or water, and to my knowledge no potential is known
which might describe macromolecules like proteins or enzymes.

Direct simulation Monte Carlo is a more plausible candidate than normal
molecular dynamics. (To my knowledge) it replaces the computationally
costly potential calculations with Monte Carlo simulation by drawing some
number of random particle-pairs which collide and give each particle a new
velocity by some rule (like conservation of temperature). This is done in
combination with calculating collisions with any walls which might be present
in the system. Although DSMC is a sort of scaled up version of MD it too
suffers from some problems which might make it unsuitable for modeling
processes in the brain. DSMC is mainly tailored to recreate the properties of
Argon gas. This does not have to be as big a weakness as it sounds; it only
means that charge neutrality is assumed.

This thesis enters as the first attempt at trying to combine a well known
continuum model of diffusion processes with stochastic model of the same
diffusion process. Although this might seem a bit unnecessary at first there
are quite a few diffusion processes in the brain where this might be the only
reasonable model. For example, the extracellular space in gray-matter is so
narrow in some places that it is problematic to assume continuity. Transport

Section 2 Progress of the project 7

processes in and out of dentritic spines are also assumed to be diffusion
governed, but only consist of some ten or less particles (this converts to nMol

L
concentrations).

1.2 Progress of the project

The combination of stochastic and continuum models immediately raise the
question of where the limit between the two scales is. As was done by Plapp
and Krama [11] one way to postpone answering this question is by introducing
some conversion parameter, which will define how many stochastic units
one unit of concentration is equivalent to. In addition to this, the initial
model was built with testing in mind, which makes the exact limit rather
uninteresting.

The stochastic model chosen in this project is random walks because
of its mathematical equivalence to the diffusion equation (see sections 2.3.1
and 2.3.2), its conceptual simplicity and because of how easy it is to add
complexity to the model. Seeing as there is a mathematical equivalence
between the two models an initial goal was to force the error-term from
the random walk part of the solver to smaller than the error term from the
numerical solution of the partial differential equation. A lot of time went
into making this work by experimenting with the required conversion ratio,
the required number of time-steps in the random walk model per time-step
on the PDE solver, various curve-fitting possibilities and a lot of (needless)
debugging. At one point it seemed that everything behaved as expected, but
this turned out to be a bug which meant doing even more testing an needless
debugging. Finally, an explanation to the difficulty of this seemingly simple
problem was found (see section ??) and no more attempts were done.

After forcing the error terms to behave properly was abandoned, an at-
tempt at combining the diffusion equation solver with DSMC code developed
by Anders Hafreager during his masters thesis was made. Although this com-
bination to some extent works, it suffers from a difference in dimensionality.
The DSMC code runs in three spatial dimensions, whereas the code devel-
oped in this thesis at the moment is limited to two spatial dimensions because
more were not required. The extension to three spatial dimensions should
not be too hard, however, and both the “backened” linear algebra solver and
the random walk module should already support 3D modeling.

Finally, to prove that the developed software can be used to something
reasonable it was slightly modified to fit a real life diffusion problem in which
an enzyme diffuses through a wide dendrite into a very narrow dendritic spine
(< 1µm). A thorough description of this problem is found in section ??. The

8 Introduction Chapter 1

formalism of the software also allows for testing of diffusion processes where
spines are added and/or removed from the dendrite by some conservation
rule as observed in some real life systems [].

1.3 What is computational neuroscience

Neuroscience is the scientific study of the central nervous system, but in the
traditional sense it focuses very much on what parts of the brain are respon-
sible for what. Computational neruroscience is more focused on the physics
and chemistry involved in the different parts of the brain and nervous sys-
tem. An example of the power of this approach is the classical work done
by Hodgkin and Huxley in 1952, earning them the Nobel price in Physiology
or medicine in 1963. Through four non-linear coupled differential equations
they were able to predict the propagation speed of signals along the squid
giant axon to a quite high precision.

The central nervous system

All animals except sponges and radially symmetric animals (like jellyfish)
have a central nervous system (CNS) tasked with gathering and processing
information about nerve impulses from the rest of the body. For vertebrates
(animals with a backbone), the CNS is made up of a brain and a spinal cord.
The spinal cord gathers information from the peripheral nervous system and
relays (most of) this information to the brain where it is processed.

The human brain is an immensely complicated structure which we will
only barely begin to describe here. It consists of two main types of cells;
the neurons and neuroglia as well as blood vessels. The neurons are located
(primarily) in the neocortex, which is what one would call the folded structure
of gray-matter. Neurons are tasked with signal processing and transport,
while the glial cells are thought to have more janitorial tasks like metabolic
support and guidance of development. There are some different classifications
of neurons, mostly by their location in the neocortex or by their geometry.
This thesis focuses on pyramidal neurons, named after their triangular cell
body, which are found in the hippocampus and the cerebral cortex (among
others) in most (all?) mammals. Pyramidal neurons are chosen because of
their large apical dendrite and the presence of dendritic spines.

Section 3 What is computational neuroscience 9

Neurons and how they work

Neurons are bathed in a salt solution that is mainly Na+ and Cl−, but some
other ions like potassium and calcium are also present and seem fairly impor-
tant. Inside the neurons, a highly regulated salt solution of mainly K+ sets
up a potential difference relative to the outside of the cell of approximately
−65mV. A common trait for pyramidal neurons is the presence of a single
axon and a large dendrite at the apex of the cell body (Soma) called the
apical dendrite. The axon is where the outgoing signals from the cell go,
after they are gathered by the dendrites and integrated in the Soma. Axons
can vary in length from millimeters to several centimeters, but are usually
rather thin. They branch out towards the end to connect with several other
neurons via synapses.

The activity level of a neuron varies a lot, some continuously fire action
potentials at a frequency of 10-100 per second, while others are mostly quiet
and fire a lot of action potentials given a certain input. These action po-
tentials are generated in the body of the cell, called the soma, from where
they propagate down the axon without loss of amplitude. This is achieved
by constantly amplifying the signal using ion pumps (see the Hodgin-Huxley
model of the action potential [5]). After propagating down the axon, the
action potential reaches a synapse which is a gate to another neuron. If the
action potential is of significant strength, vesicles carrying neurotransmitters
merge with the synapse membrane, letting the neurotransmitters diffuse to
the Post Synaptic Density (PSD of a spine on the receiving dendrite. If
enough neurotransmitters reach the post-synaptic side, the signal continues
propagating to the soma of this neuron, and the entire process starts over
again.

Spines and memory storage/learning

The storage of memories on a sub-cellular level is thought to partly lie in the
strengthening or weakening of the receiving synapse end, the PSD []. Famil-
iar impressions will cause similar firing patterns in the sense that the same
neurons tend to fire action potentials, which in turn are received by the same
neurons each time. If the receiving synapses are strengthened or weakened
the resulting integrated signals sent to the cell body will be hastened or held
back accordingly and the response is strengthened and more time-efficient
(DEFINETELY CITE SOMETHING HERE, OR JUST REWRITE... []).
The strengthening of synapses is known as long-term potentiation (LTP, and
the weakening of synapses is known as long-term depression (LTD).

10 Introduction Chapter 1

LTP has been coupled directly with the enzyme protein kinase Cγ (PKCγ.
The dynamics of the actual process is, in part, what will be modeled in this
project. According to Craske et.al [2] PKCγ is released into the intracellular
plasma of a neuron after being triggered by an increased concentration of
calcium ions (Ca2+).

Chapter 2

Some Theory

11

12 Some Theory Chapter 2

This chapter will deal with random walks in general and the transition
from the statistical view to PDEs. Different algorithms to produce random
walks will be discussed, highlighting their pros and cons in light of this project
along with some details which prove either problematic or helpful. Numerical
solution of PDEs will also be discussed, also with emphasis on what is relevant
for this project. Some words on (computational) neuroscience are needed,
and can be found in section ?? along with a description of the physical
application of this project. Finally an algorithm for combining random walk
diffusion solvers and normal PDE diffusion solvers will be introduced and
discussed.

2.1 Notation
There will be some mathematics in this chapter, and so it might be useful to
clarify on the notation used throughout the project.

In the following section the Gaussian distribution will be derived from
the Bernoulli distribution through some expectation values such as the ex-
pected total displacement of a random walker and the expected root mean
square displacement of a walker. Expectation values are denoted by brackets.
Equation (2.1) shows the expectation value of a quantity a.

〈a〉 =
∑

aP (a) (2.1)

Note the difference between the expectation value of a quantity squared and
the square of the expectation value of the same quantity, stated in equation
2.2.

〈a〉2 6= 〈a2〉 (2.2)

For the section on discretization of partial differential equations 2.4 some
sub- and super- scripts will be used. To clarify; a superscript tn does not
mean t to the n’th power, but

tn = t0 + n ·∆t

which is the n’th time-step after the starting time t0 (t0 will always be zero).
Similarly, the subscripts denote positions on the mesh. This means, finally,
that unij denotes the numerical solution to the discretized PDE evaluated
at time-step n and in the i’th point in x-direction and the j’th point in y
direction:

unij = u(n ·∆t, i ·∆x, j ·∆y)

Section 3 Physical scope 13

Throughout the thesis, the use of exponential functions might seem a
bit inconsistent notation-wise. There are two different notations in use, eC
and exp(C). The latter is mainly used when the expression C is large, like a
fraction, to improve readability. However, this is abandoned if there might be
room for misconception. As an example, the calculations in section 2.3.2 are
done using eC rather than exp(C) even though C might be a fraction. This
is done because the exponential at some point is multiplied by a parenthesis,
and where this multiplication takes place might have been unclear otherwise.

2.2 Physical scope

Say something about neuroscience, neurons, spines

2.3 Introduction to random walks

The most basic random walk (is it though?) is a walker on the x-axis which
will take a step of a fixed length to the right with a probability p, or to the left
with a probability q = 1−p. Using (pseudo-) random numbers on a computer
we can simulate the outcomes of a random walk. For each step (of which
there are N) a random number, r ∈ [0, 1] is drawn from some distribution
(say a uniform one) which will be the probability. If r ≤ p the walker will
take a step to the left, otherwise it will take a step to the right. After the N
steps the walker will have taken R steps to the right, and L = N − R steps
to the left. The net displacement from the origin will be S = R− L.
This simple approach is easily generalizable to two and three dimensions
by having 2d possible outcomes from the random number, where d is the
dimensionality. In two dimensions the walk can be split in two; first randomly
choosing what dimension to perform the step in and then randomly choosing
the sign of the step ((−1)r · l).

2.3.1 Random walkers and Gaussian distribution

The following derivation is borrowed from a compendium in statistical me-
chanics by Finn Ravndal.
If sufficiently many walks are done, the net displacement will vary from
S = +N to S = −N representing all steps to the right and all steps
to the left respectively. The probability of all steps being to the right is
PN(N) = pN . Should one of the steps be to the left, and the rest to the
right the resulting net displacement will be S = N − 2 with the probability

14 Some Theory Chapter 2

PN(R = N−1) = NpN−1q. This can be generalized to finding the probability
of a walk with a R steps to the right as

PN(R) =

(
N

R

)
pRqN−R (2.3)

where
(
N
R

)
= N !

R!(N−R)!
is the number of walks which satisfy the net displace-

ment in question, or the multiplicity of this walk in statistical mechanics
terms. Equation 2.3 is the Bernoulli probability distribution, which is nor-
malized.

N∑
R=0

PN(R) = (p+ q)N = 1N = 1

From this distribution important statistical properties of a walk consisting
of some N steps can be calculated. For example, the average number of steps
to the right is

〈R〉 =
N∑
R=0

RPN(R)

=
N∑
R=0

(
N

R

)
RpRqN−R

= p
d

dp

N∑
R=0

(
N

R

)
pRqN−R

= p
d

dp
(p+ q)N

= Np(p+ q)N−1

= Np

The average value of the net displacement is found by using S = R−L =
R− (N −R) = 2R−N .

〈S〉 = 〈2R〉 −N
= 2Np−N(p+ q)

= N(2p− p− q)
= N(p− q)

Section 3 Introduction to random walks 15

We notice that the average net displacement is greatly dependent on the rela-
tionship between p and q, and that any symmetric walk will have an expected
net displacement of zero. In many cases the mean square displacement is of
more interest than the displacement itself, because many important large
scale parameters can be related to the root-mean-square displacement. This
can also be calculated rather straightforwardly.

〈R2〉 =
N∑
R=0

R2PN(R)

=
N∑
R=0

(
N

R

)
R2pRqN−R

=

(
p
d

dp

)2 N∑
R=0

(
N

R

)
pRqN−R

=

(
p
d

dp

)2

(p+ q)N

= Np(p+ q)N−1 + p2N(N − 1)(p+ q)N−2

= (Np)2 +Np(1− p)
= (Np)2 +Npq

Like before, the average net displacement is given as S2 = (2R−N)2 and
we obtain

〈S2〉 = 4〈R2〉 − 4N〈R〉+N2

= 4((Np)2 +Npq)− 4N2p+N2

= N2(4p2 − 4p+ 1) + 4Npq

= N2(2p− 1)2 + 4Npq

= N2(p− q)2 + 4Npq.

which for the 1D symmetric walk gives 〈S2〉 = N and the variance, denoted
〈∆S2〉 = 〈〈S2〉 − 〈S〉2〉, is found by insertion as

〈∆S2〉 = 〈〈S2〉 − 〈S〉2〉
= 〈N2(p− q)2 + 4Npq − (N(p− q))2〉
= 4Npq

When the number of steps gets very large the Bernoulli distribution (eq.
2.3) can to a very good accuracy be approximated by the Gaussian distribu-
tion. This is most easily done in the symmetric case where p = q = 1

2
, but it

16 Some Theory Chapter 2

is sufficient for the step-lengths to have a finite variance (find something to
refer to). The Bernoulli distribution then simplifies to

P (S,N) =

(
1

2

)N
N !

R!L!
(2.4)

on which we apply Stirling’s famous formula for large factorials n! '
√

2πn ·
nne−n.

P (S,N) =

(
1

2

)N
N !

R!L!

= exp
(
−N ln 2 + ln

√
2πN +N lnN − ln

√
2πR−R lnR− ln

√
2πL− L lnL

)
=

√
N

2πRL
exp

(
−R ln

2R

N
− L ln

2L

N

)
Where we have used R + L = N . Inserting 2R

N
= 1 + S

N
and 2L

N
= 1− S

N

and expanding the logarithms to first order results in

P (S,N) =

√
N

2πRL
exp

(
−N + S

2

S

N
+
N − S

2

S

N

)
=

√
N

2πRL
exp

(
− S

2

2N

)
Then inserting RL = N2−S2

4
in the prefactor, and approximating 1− S2

N2 '
1 results in a discrete Gaussian distribution (eq. 2.5) with 〈S〉 = 0 and
〈S2〉 = N .

P (S,N) =

√
2

πN
exp

(−S2

2N

)
(2.5)

A continuous final position can be derived by assuming that the walker
is moving on the x-axis, and letting the step-length, a, get small. The final
position is now the continuous variable x = Sa. Similarly the time interval
between each step, τ is assumed to be small, and the walker now runs for a
continuous time-variable t = Nτ . This changes the distribution 2.5 to

P (x, t) =
1

2a

√
2τ

πt
exp

(
− x

2τ

2a2t

)
. (2.6)

The prefactor 1
2a

is needed to normalize the continuous probability distribu-
tion since the separation between each possible final position in walks with
the same number of steps is ∆x = 2a. Introducing the diffusion constant

D =
a2

2τ
(2.7)

Section 3 Introduction to random walks 17

makes the distribution

P (x, t) =

√
1

4πDt
exp

(
− x2

4Dt

)
(2.8)

Introducing x also gives us the expectation value and variance of x on a
form which will be useful later.

We have x = Sa which means

〈x〉 = a〈S〉

and
〈x2〉 = a2〈S2〉

Finally, the variance is found by insertion 〈∆x2〉

〈∆x2〉 = 〈〈x2〉 − 〈x〉2〉
= 〈a2〈S2〉 − a2〈S〉2〉
= 4Npqa2 (2.9)

2.3.2 More general Random Walks

In the more general case, the position of a random walker, r at a time ti is
given by the sum

r(ti) =
i∑

j=0

∆x(tj) (2.10)

where ∆x(tj) = (∆x(tj),∆y(tj),∆z(tj)) in 3D. Each ∆x,∆y,∆z is a random
number drawn from a distribution with a finite variance σ2 = 〈∆x2〉. By
the central limit theorem, any stochastic process with a well defined mean
and variance can, given enough samples, be approximated by a Gaussian
distribution. This means that the probability of finding the walker at some
position x after M steps is

P (x,M) ∝ e−
x2

2Mσ2 (2.11)

Recall that the actual Gaussian distribution is

1√
2πσ2

exp

(
(n− µ)2

2σ2

)
Introducing an Einstein relation σ2 = 2dD∆t and the obvious relation

t = M∆t results in a more desirable exponent.

18 Some Theory Chapter 2

The introduction of the Einstein relation might put some restrictions on
the model. Normalizing the expression gives

P (x, t) =

√
1

4Dt
exp

(
− x2

4Dt

)
(2.12)

A large number, N, of walkers can be described by their concentration
C(x, t) = NP (x, t). The concentration is conserved, so any amount that
flows out of an area must reflect as a decrease in concentration. This is
expressed by the flow of concentration

∂C

∂t
−∇ · J = S (2.13)

where J is the flow vector and S is a source term which for now is zero.
Through Fick’s first law the diffusive flux is related to the concentration
gradient J = −D∇C. Inserting this gives

∂C

∂t
= ∇ · (D · ∇C) (2.14)

which is the diffusion equation. Insertion of the Gaussian distribution (2.12))
verifies that the Gaussian distribution fulfills the diffusion equation. Starting
with only the time derivative gives

∂P

∂t
= − 4πDe−

x2

4Dt

2
√

(4πDt)3
+

x2e−
x2

4Dt

4Dt2
√

4πDt

= e−
x2

4Dt

(
8Dx2

2
√
π(4Dt)5/2

− (4D)2t

2
√
π(4Dt)5/2

)
=

4De−
x2

4Dt (x2 − 2Dt)√
π(4Dt)5/2

Which is balanced by the spatial derivative

D
∂2P

∂x2
=

D√
4πDt

∂

∂x

[
−e−x2

4Dt

(−2x

4Dt

)]
=

2D

4Dt
√

4πDt
e

−x2
4Dt

[
1− x

(
2x

4Dt

)]
=

4De−
x2

4Dt (x2 − 2Dt)√
π(4Dt)5/2

meaning that the diffusion equation is satisfied.

Section 3 Introduction to random walks 19

2.3.3 Choosing random walk algorithm

The simplest random walk model, which places walkers on discrete mesh
points and uses a fixed step length, has been used with great success to
model diffusion processes. Farnell and Gibson discuss this in their article
[3]. In this project we will be torn between choosing a realistic algorithm to
advance the random walkers, like Brownian motion or to go for simplicity.
That being said, by the central limit theorem both models will after some
time-steps be described by a Gaussian distribution meaning that on the PDE
scale we will not know the difference. Hence it will make no sense to not use
the simplest random walk model. Note that it will be quite easy to change
the algorithm used for random walks, and so we have not locked ourselves to
anything yet.

2.3.4 Random walks and anisotropy

Although the self diffusion problem, which is what we are looking at with
diffusing particles in and out of dendritic spines is not anisotropic on its
own, there might be some possible applications which require describing
anisotropic diffusion of random walkers. There is reason to believe that
an anisotropic diffusion process on the PDE level will lead to an anisotropic
random walk model as well, but how should this be modeled. Simply re-
placing the diffusion constant by a function D = D(x) (see eq (2.50)) is a
natural first approximation, but this will not quite be sufficient as Farnell
and Gibson point out [3]. Through their experiments they found that only
adjusting the step-length will not improve the error noticeably and reasoned
that this is because the walkers are still as likely to jump in both directions
(right or left in 1d), and that the stepsize is the same in both cases, hence the
model does not resemble anisotropy. They went on to introduce an adjusted
step-length and an adjusted step probability, a solution they landed on after
trial and error. The expressions they proposed are listed in equations (2.15)
to (2.19).

∆p(x) =
1

2
(L(x) + L(x+ ∆p(x)))→ L(x) +

1

2
L(x)L′(x) (2.15)

∆m(x) =
1

2
(L(x) + L(x−∆m(x)))→ L(x) +

1

2
L(x)L′(x) (2.16)

where L(x) is defined in equation 2.17 and ∆p(x) and ∆m(x) are the
adjusted step-lengths to the right and left, respectively.

L(x) =
√

2D(x)∆t (2.17)

20 Some Theory Chapter 2

The adjusted jump probabilities Tr(x) and Tl(x) which are the probabilities
for a walker at position x to jump right or left, respectively are defined in
equations (2.18) and (2.19)

Tr(x) =
1

2
+

1

4
L′(x) (2.18)

Tl(x) =
1

2
− 1

4
L′(x) (2.19)

Notice that the adjusted step-length first proposed is still a part of the final
expressions.

2.3.5 Random walks and drift

Another point which should be addressed is diffusion with a drift term, ∂u
∂x
.

Initially one thought that diffusion in the ECS of the brain was governed
by a drift term, but the modern perception is that this drift term is in the very
least negligible [10]. Though it is unlikely that we will include a drift term in
our model, we will say a few words about it here since it is of importance in
other applications and might be a natural extension at some point, should
someone else use this work.
We model random walkers with drift by simply adding some vector to the
Brownian motion model, thus forcing all walkers to have a tendency to walk
a certain direction. This approach can also be used in the fixed steplength
(or variable steplength in the anisotropic case) if we express the new step, s,
as

s = (±l or 0,±l or 0) + d

where d denotes the drift of the walker.
We can set up the continuity equation for a concentration, C(x, t) = NP (x, t)
of random walkers which are affected by a drift.

∂C

∂t
+∇ · j = S (2.20)

Where j denotes the total flux of walkers through some enclosed volume and
S is a source/sink term. Since the walkers are affected by drift the flux will
consist of two terms;

j = jdiff + jdrift

From Fick’s first law we know that jdiff = −D∇C. The second flux term is
the advective flux which will be equal to the average velocity of the system;

Section 3 Introduction to random walks 21

jdrift = vC. Inserting this in the continuity equation gives us the well known
convection diffusion equation (2.21).

∂C

∂t
= ∇ · (D∇C)−∇ · (vC) + S (2.21)

Which in many cases will simplify to

∂C

∂t
= D∇2C − v · ∇C (2.22)

In order to determine all the parameters of the convection diffusion equa-
tion (2.21) we will need to go through some of the calculations from section
2.3. The situation is the same, a walker in one dimension which can jump
left or right, but this time will also move a finite distance d each time-step.
This will make the expected net displacement

〈S〉 = R− L+Nd = N(p− q) +Nd

and the expected mean square displacement

〈S2〉 = (2〈R〉 −N)2 + (Nd)2

= N2(p− q)2 + 4Npq + (Nd)2

which in turn gives us the variance

〈∆S2〉 = 〈〈S2〉 − 〈S〉2〉
= N2(p− q)2 + 4Npq + (Nd)2 −N2(p− q)2 − (Nd)2

〈∆S2〉 = 4Npq

This shows us that the variance is untouched by the drift term, but not the
mean which for the symmetric case is 〈S〉 = Nd. When we convert this to
the continuous variables x and t we get the solution shown in equation 2.23.

C(x, t) =
N√

4πDt
exp

(
−(x− vt)2

4Dt

)
(2.23)

Where v = d
∆t

is the velocity of the concentration and D is the well known
diffusion constant, inserted from the Einstein relation σ2 = 2D∆t.

22 Some Theory Chapter 2

2.3.6 Pseudo-random numbers

This is also a large mathematical field which will only be touched in this
thesis. Further reading can be found in the 1990s review by James [7].

Although modern technology has made true randomness available, we do
not currently have access to this and are limited to pseudo-random numbers.
For all purposes in this thesis, pseudo-randomness is presumed adequate.

A pseudo random number generator (RNG) is essentially a function which
produces seemingly random numbers through a series of operations. These
operations often rely on other, engineered numbers which will maximize the
RNGs period. A period is the number of function calls which can be per-
formed before the RNG starts producing the same sequence of numbers.
Naturally this period should be as large as possible. There are quite a lot
of methods to produce pseudo-random numbers [7], but only two are imple-
mented in this project (not counting the built in RNGs in the “cmath” and
“armadillo” modules).

ran0

This is a simple RNG borrowed from [6]. It is very fast, and simple to imple-
ment and use given that you know the engineered unlikely numbers it uses.
The period of ran0 on the other hand is rather small, only ∼ 108. For short
simulations this will not be a problem, however.

Five seeded xor-shift

This is a more complicated algorithm developed by George Marsaglia. It uses
five seeds which are all updated every time it is called to make a pseudo-
random 64-bit unsigned integer (check this), which can be converted to a
double. Implementing this algorithm is intricate, but it is found written
out by Marsaglia [9]. As opposed to the ran0 algorithm this uses a series of
bitshifts to produce the random numbers and update the seeds. It is not as
fast as ran0, but only some 10− 30% slower. Because of the five seeds used,
however, this algorithm has a period of ∼ 1048 [9] making it more than good
enough for most MC-simulations I have heard about, and certainly for this
project.

Section 4 Some words about partial differential equations 23

2.4 Some words about partial differential equa-
tions

2.4.1 Finite Difference Methods

Although there are a few methods for solving PDEs numerically, this project
will focus on finite difference methods (FDM). This is done both for simplicity
and because, as will be argued later, there is no need for very accurate solvers
due to the error terms arising from random walk solvers.

Solution of PDEs through FDMs is done by approximating a continuous
axis by a discontinuous mesh, and likewise the continuous PDE is approxi-
mated by its value at the discontinuous mesh-points. The derivatives in the
PDE are then approximated by finite differences through the definition of
the derivative (2.24), replacing the limit of h with the finite discretization
parameter h.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (2.24)

The terms explicit and implicit scheme will also be used. An explicit
scheme is a numerical scheme which solves a PDE numerically by using values
which have already been calculated. A typical example of this would be to
evaluate the spatial derivative at the previous time-step seeing as this has
been calculated already. Implicit schemes typically tries to use values which
have yet to be calculated in order to calculate new values. This can for
example be achieved by evaluating the spatial derivative at the time-step
which is being calculated, leading to a system of linear equations (see section
2.4.2 to see how this is done).

Numerical solution of PDEs is an enormous and important field, which
cannot be done justice by a presentation here. For more on numerical solution
of PDEs in general, consult [] or [].

2.4.2 Discretizing

To maintain a bit of generality, the (potentially) anisotropic diffusion equa-
tion in 2d will be discretized. The extension to 3d is trivial, as is the 1d
version. The drift term will be omitted in the beginning because this also
results in a simple addition to the numerical scheme. The equation to be
discussed is

∂u

∂t
= ∇(D · ∇u) + f (2.25)

24 Some Theory Chapter 2

where f is some source term. The final expression and scheme will depend
on how the time derivative is approximated, but the spatial derivative will
have the same approximation.
The innermost derivative is done first in one dimension, generalization to
more dimensions is trivial, and will consist of adding the same terms for the
y and z derivatives.

[
d

dx
u

]n
≈
uni+1/2 − uni−1/2

∆x

Where the derivative is approximated around the point xi. Inserting
φ(x) = D du

dx
simplifies the outermost derivative, which will also be done in

one dimension.

[
d

dx
φ

]n
≈
φni+1/2 − φni−1/2

∆x

Inserting for φ gives the important intermediate step

φni+1/2 − φni−1/2

∆x
=

1

∆x2

(
Di+1/2(uni+1 − uni+1)−Di−1/2(uni − uni−1)

)
Since the diffusion constant can only be evaluated at the mesh points

(or strictly speaking since it is a lot simpler to do so), an approximation
Di±1/2 ≈ 0.5(Di±1 +Di) is used. Inserting this results in

∇D∇u ≈ 1

2∆x2
((Di+1,j +Di,j)(ui+1,j − ui,j)− (Di,j +Di−1,j)(ui,j − ui−1,j))

+
1

2∆y2
((Di,j+1 +Di,j)(ui,j+1 − ui,j)− (Di,j +Di,j−1)(ui,j − ui,j−1))

The discretization of the time-derivative is where a difference between
the two schemes used in this project can be seen. When ordinary differential
equations are discretized one can clearly see how this difference arises, and
so the PDE is written in a new notation using some general operation, P like
the double spatial derivative

Dtu = Pu (2.26)

Introducing the general discretization of the time derivative gives equation
(2.27) known as theta-rule. Setting θ = 0 yields the Forward Euler (FE)
discretization, and θ = 1 the Backward Euler (BE) discretization.

Section 4 Some words about partial differential equations 25

un+1 − un
∆t

= P
(
θun+1 + (1− θ)un

)
(2.27)

From the theta rule it is clear that the only difference between the FE and
BE scheme is at what time-step the right-hand-side of the equation is eval-
uated. The theta-rule can give other schemes as well, using some weighted
average of the right-hand-side at tn and tn+1 but these are considered irrel-
evant in this project. Equation 2.28 summarizes what has been done so far
by writing out the FE discretization the way it will be implemented in 1d.

un+1
i =

∆t

2∆x2

(
(Di+1 +Di)(u

n
i+1 − uni)− (Di +Di−1)(uni − uni−1)

)
+ uni

(2.28)

We will come back to the FE discretization when we discuss stability
later.
The BE discretization has more unknowns to be found at each mesh-point,
as equation 2.29 shows.

un+1
i =

∆t

2∆x2

(
(Di+1 +Di)(u

n+1
i+1 − un+1

i)− (Di +Di−1)(un+1
i − un+1

i−1)
)

+ uni

(2.29)

Writing out the calculations for a small mesh reveals a pattern which can
be exploited.

un+1
0 =

∆t

2∆x2

(
2(D0 +D1)(un+1

1 − un+1
0)

)
+ un0

un+1
1 =

∆t

2∆x2

(
(D2 +D1)(un+1

2 − un+1
1)− (D1 +D0)(un+1

1 − un+1
0)

)
+ un1

un+1
2 =

∆t

2∆x2

(
(D3 +D2)(un+1

3 − un+1
2)− (D2 +D1)(un+1

2 − un+1
1)

)
+ un2

un+1
3 =

∆t

2∆x2

(
2(D2 +D3)(un+1

3 − un+1
2)

)
+ un3

Rearranging this and setting a = ∆t
2∆x2

results in a normal system of linear
equations

un+1
0 (1 + 2a(D0 +D1))− 2aun+1

1 (D1 +D0) = un0
un+1

1 (1 + a(D2 + 2D1 +D0))− aun+1
2 (D2 +D1)− aun+1

0 (D1 +D0) = un1
un+1

2 (1 + a(D3 + 2D2 +D1))− aun+1
3 (D3 +D2)− aun+1

1 (D2 +D1) = un2
un+1

3 (1 + 2a(D3 +D2))− 2aun+1
2 (D3 +D2) = un3

26 Some Theory Chapter 2

which is arranged as
1 + 2a(D0 +D1) −2a(D1 +D0) 0 0
−a(D1 +D0) 1 + a(D2 + 2D1 +D0) −a(D2 +D1) 0

0 −a(D2 +D1) 1 + a(D3 + 2D2 +D1) −a(D3 +D2)
0 0 1 + 2a(D3 +D2) −2a(D3 +D2)

un+1 = un

(2.30)

Mun = un−1 (2.31)

If the system of equations is solved by the fool-proof Gaussian elimination,
some O(n3) FLOPs are required per time-step. This will get even worse in
more spatial dimensions; O(n6) in 2D and O(n9) in 3D. As a comparison the
explicit scheme will make due with O(nd) FLOPs. There are, however ways
to improve this. Seeing as the matrix M does not change as long as none of
the parameters change a LU-decomposition can be used. This will demand a
decomposition of O(n3) FLOPs, but all the subsequent steps will be O(n2)
FLOPs (O(n2d) for higher dimensions). This is still not quite at the level of
the explicit scheme, but it is a clear improvement.
Looking closer atM we notice that it is not only sparse, but tridiagonal. This
calls for further optimization which brings the required number of FLOPs
down to O(n) making it equally efficient to the explicit scheme. More on
tridiagonal Gaussian elimination later.

Though the applications covered by this project do not cover advection
diffusion (diffusion with a drift term), a simple version will be added to the
implementation to match the derived expression for RW with a drift term
(see section 2.3.5). Recall the advection diffusion equation derived in section
2.3.5,

∂C

∂t
= D∇2C − v · ∇C

This equation has a first order spatial derivative which will make the
numerical scheme less accurate if discretized the wrong way. Seeing as the
spatial resolution is (often) coarser than the resolution in time, a term with
a residual of the order O(∆x) would dominate the error of the scheme. It
will therefore be necessary to use a more accurate approximation to the first
derivative. The approximation

v · ∇C ≈ v
Ci+1 − Ci−1

2∆x

will not only reduce the residual to O(∆x2), it is also incredibly simple to
implement both in the FE and BE scheme seeing as the Neumann boundary
conditions forces this term to be zero at the boundary – this is strictly speak-
ing not correct?. The resulting extra implementation therefore consists of

Section 4 Some words about partial differential equations 27

adding a simple term on the diagonals of the assembled matrix in the BE
discretization, and an equally simple term in the FE scheme.

2.4.3 Stability

In section 2.4.2 the Forward Euler was used as an approximation to the time
derivative. Unfortunately the resulting scheme is potentially unstable, as
this section will demonstrate. First, the solution to equation (2.14) (u(x, t))
is assumed to be on the form

u(x, t) = Ane(ikp∆x) (2.32)

where i2 = −1 is the imaginary unit and An is an amplification factor
which, for the solution (eq. (2.32)) ideally should be e−π2t, but will be some-
thing else in the numerical case. Notice the restriction |A| ≤ 1 if u is to
not blow up. Inserting eq. (2.32) in the simplified version of the variable
coefficient scheme (where the coefficient is constant) gives the following

e(ikp∆x)
(
An+1 − An

)
= An

D∆t

∆x2

(
e(ik(p+1)∆x) − 2e(ikp∆x) + e(ik(p−1)∆x)

)
Ane(ikp∆x) (A− 1) = Ane(ikp∆x)D∆t

∆x2

(
e(ik∆x) − 2 + e(−ik∆x)

)
Using the well known identities

e(iax) + e(−iax) =
1

2
cos2

(ax
2

)
and

cos2(ax)− 1 = sin2(ax)

gives the intermediate expression eq. (2.33)

A− 1 =
D∆t

∆x2
sin2

(
k∆x

2

)
(2.33)

The “worst case scenario” in eq. (2.33) is max(sin2
(
k∆x

2

)
) = 1. Inserting

this extreme value helps find the worst possible error term

A =
D∆t

2∆x2
+ 1 =⇒ ∆t ≤ ∆x2

2D
(2.34)

In 2d this criterion is halved, and for the anisotropic case the maximum value
of D must be considered which, again, will be the “worst case scenario”.
The same procedure is used to determine the stability of the BE scheme

28 Some Theory Chapter 2

e(ikp∆x)
(
An − An−1

)
= An

D∆t

∆x2

(
e(ik(p+1)∆x) − 2e(ikp∆x) + e(ik(p−1)∆x)

)
Ane(ikp∆x)

(
1− A−1

)
= Ane(ikp∆x)D∆t

∆x2

(
e(ik∆x) − 2 + e(−ik∆x)

)
which leads to

A =
1

1 + D∆t
∆x2

(2.35)

Equation (2.35) is smaller than 1 for all ∆t > 0 which means that the scheme
is unconditionally stable.

2.4.4 Truncation error

The numerical derivative is not the analytical derivative, but an approxi-
mation. This approximation has a well defined residual, or truncation error
which is found by Taylor expansion. The following section will derive the
residuals for the approximations used in this project in order to verify the
numerical implementation later. For the FE time-derivative scheme, the
residual is defined as

R =
u(tn+1)− u(tn)

∆t
− u′(tn)

Recall the Taylor expansion of u(t+ h) =
∞∑
i=0

1
i!
di

dti
u(t)hi

R =
u(tn) + u′(tn)∆t+ 0.5u′′(tn)∆t2 +O(∆t3)− u(tn)

∆t
− u′(tn)

= u′′(tn)∆t+O(∆t2)

R ∼ O(∆t)

Similarly, the BE scheme has the following residual Recall the Taylor

expansion of u(x− h) =
∞∑
i=0

1
i!
di

dti
u(x)(−h)i

R =
u(tn)− u(tn − 1)

∆t
− u′(tn)

=
u(tn) + ∆tu′(tn) + 0.5∆t2u′′(tn) +O(∆t3)

∆t
− u′(tn)

R ∼ O(∆t)

Section 4 Some words about partial differential equations 29

There are many discretization schemes with much smaller residuals than
these, but in this project the PDE is not the only error source seeing as
a random walk solver will be introduced, and so the FE/BE schemes are
deemed accurate enough.

The spatial derivative also has a well defined residual defined by

R =
u(xi+1)− 2u(xi) + u(xi−1)

∆x2
− u′′(xi) (2.36)

Doing the expansions and cleaning up a bit

R =

u′(xi)∆x+ 0.5u′′(xi)∆x
2 + 1

6
u(3)(xi)∆x

3 + 1
24
u(4)(xi)∆x

4 +O(∆x5)

∆x2
+

2u(xi)− 2u(xi)

∆x2
− u′′(xi)+

−u′(xi)∆x+ 0.5u′′(xi)∆x
2 − 1

6
u(3)(xi)∆x

3 + 1
24
u(4)(xi)∆x

4 +O(∆x5)

∆x2

R = u′′(xi) +
1

12
u(4)(xi)∆x

2 +
O(∆x5)

∆x2
− u′′(xi)

R ∼ O(∆x2)

There are discretizations that can reduce this residual even further (although
a second order scheme is usually considered adequate), but this time the sta-
bility criterion on the time derivative (eq. (2.4.3)) will always be of the order
O(∆x2) and so we will never get a smaller error than this unless we change
the time derivative.

Quantifying an error term for the random walk solver is not straightfor-
ward, but naturally it will be closely coupled to the number of walkers used.
Statistical mechanics states that statistical fluctuations around a steady state
is related to the number of samples, N , which in this case is the number of
walkers, through eq. (2.37).

〈∆u〉 ∝ 1√
N

(2.37)

In the combined solver, we assume that equation 2.37 still holds for the
RW-part of the solution even though we can only say for certain that it is
correct for the first time-step. The number of walkers, N is now given by the
defined conversion factor Hc as

N(x, y, t) = Hc · U(x, y, t) (2.38)

30 Some Theory Chapter 2

and the total number of walkers is the sum of the walkers on all the mesh-
points. In each mesh-point the fluctuations are of the order

√
N(xi, yj, tn)

−1
,

meaning that the convergence rate in each mesh-point is 1
2
.

A lot of time has gone into forcing this error to be negligible by introduc-
ing many walkers and fining a clever way to combine the RW solution with
the PDE solution. Two problems turn out to make this a lot harder than it
seems:
• The required number of walkers is very large.

• The walkers must be “reset” at each time-step.
At this point there does not seem to be any solution to this, and so only a
similar example can be presented to show that the principle works, no actual
evidence.

2.4.5 Tridiagonal linear systems

The implicit discretization results in a set of linear equations, or a linear
system, to solve at each timestep. Neumann boundaries combined with a
first derivative in time makes the linear system band diagonal, where the
number of non-zero bands on the matrix is dependent on the number of
spatial dimensions the problem is solved in. In one spatial dimension this
reduces to a tridiagonal system, which can be solved extremely efficiently
by the “tridiag” function listed below. In two spatial dimensions we are not
quite as fortunate as in one dimension, and get a banded matrix with 2n
bands and five non-zero bands, where n is the spatial resolution (which is
equal in x and y direction). Rewriting the assembled matrix (see eq. A.2) to
a block-matrix form makes the matrix tridiagonal again, but the entries are
n× n matrices.

Assuming the system has a solution, the fool-proof way to solve a linear
equation Mx = b where M is not a sparse matrix, by Gaussian elimination.

M =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x = b (2.39)

Is reduced to

M =

a11 a12 a13 a14

0 (a22 − a21a12
a11

) (a23 − a21a13
a11

) (a24 − a21a14
a11

)

0 (a32 − a31a12
a11

) (a33 − a31a13
a11

) (a34 − a31a14
a11

)

0 (a42 − a41a12
a11

) (a43 − a41a13
a11

) (a44 − a41a14
a11

)

x = b̃ (2.40)

Section 4 Some words about partial differential equations 31

and further to

M =

a11 a12 a13 a14

0 (a22 − a21a12
a11

) (a23 − a21a13
a11

) (a24 − a21a14
a11

)

0 0 (ã33 − ã32ã23
ã22

) (ã34 − ã32ã24
ã22

)

0 0 (ã43 − ã42ã23
ã22

) (ã44 − ã42ã34
ã22

)

x = b̃ (2.41)

finally resulting in an upper triangular matrix. A backwards sweep is
then performed to solve for one element of the unknown vector, x at a time.

Since most entries are zero we can easily get away with only doing one
forward sweep down the matrix, eliminating all the sub-diagonal matrix-
entries, and then one backward sweep, which calculates the unknown vector
x. The algorithm is listed below as a function implemented in C++.

vo i d t r i d i a g (doub l e ∗u , doub l e ∗ f , i n t N, doub l e ∗a , doub l e
∗b , doub l e ∗c) {
doub l e ∗temp = new doub l e [N] ;
f o r (i n t i =0; i<N; i++){

temp [i] = 0 ;
}
doub l e btemp = b [0] ;
u [0] = f [0] / btemp ;
f o r (i n t i =1; i<N; i++){

// fo rwa rd s u b s t i t u t i o n
temp [i] = c [i −1]/btemp ;
btemp = b [i]−a [i]∗ temp [i] ;
u [i] = (f [i] −a [i]∗ u [i −1]) /btemp ;

}
f o r (i n t i =(N−2) ; i >=0; i−−){

//Backward s u b s t i t u t i o n
u [i] −= temp [i +1]∗u [i +1] ;

}
d e l e t e [] temp ;

}
i n t main ()
{

r e t u r n 0 ;
}

The tridiagonal solver from the one-dimensional case can be modified so it
can be used on block-tridiagonal systems. The modified algorithm for the
block-tridiagonal matrix (2.42) is listed in (2.43), and is in fact only the linear
algebra version of the “tridiag” function, replacing the 1.0/btmp -terms with
(Bi + AiHi−1)−1. The result of rewriting the 2n-band diagonal matrix is the
block matrix in equation (2.42).

32 Some Theory Chapter 2

B0 C0 0 0 0 0 0 0 0
A1 B1 C1 0 0 0 0 0 0

0
. 0 0

. . . 0 0 0
0 0 Ai Bi Ci 0 0 0

0
. . . 0

. 0
. . . 0

0 0 0 0 0 0 0 An−1 Bn−1

un+1
0

un+1
1
...

un+1
i
...

un+1
n

= un (2.42)

which can also be expressed as Mx = k. Block-matrices named Bi are
tridiagonal, and the ones named Ai or Ci are strictly diagonal.

There is a forward substitution

H1 = −B−1
1 C1

Hi = − (Bi + AiHi−1)−1Ci

g1 = B−1
1 k1

g1 = (Bi + AiHi−1)−1 (ki − Aigi−1) (2.43)

Followed by a backward substitution

xn−1 = gn−1

xi = gi +Hixi+1

The algorithm requires inverting approximately 3n n × n matrices, which
might be expensive. However, the inversion only needs to be done once as
long as the mass-matrix, M is unchanged, and so the expense is reduced.
This should result in a computational intensity of around O(n2) seeing as
we only need to do one matrix-matrix multiplication where one matrix is
diagonal, and two matrix-vector multiplications. All of which demand O(n2)
operations. This reduction in computational cost makes the implicit scheme
as effective as the implicit FE scheme.

In three dimensions we are even more unfortunate and get a 2n2-banded
matrix and seven non-zero bands. As the appendix shows (eq. A.5) this can
be written so it looks like the block tridiagonal linear system from the 2d
case, and that could be solved by the block-tridiagonal solver. The difference
is that the entries i n the block-matrices Ai, Bi and Ci are block-matrices
themselves meaning that the block tridiagonal solver must work with n2×n2

matrices rather than n × n. All in all the performance should be around
O(n3) if the inverted matrices from the forward substitution are saved as in
the 2d case. This is about the same performance as the explicit scheme gives,
but without the stability issue.

Section 5 Combining the two solvers 33

2.5 Combining the two solvers
This section will deal with the actual combination of the two models.
The idea is that the PDE solver represents a coarse grained macroscopic
scale, and the RW model represents a high resolution microscopic scale.

2.5.1 Changing between length scales

As was mentioned in the introduction to this thesis, the combination of two
length scales immediately raises the question of exactly where the limit be-
tween the two scales goes, and why exactly there. This question is usually
answered with “models are switched when effects from the smaller scale be-
comes negligible” when moving from small to larger scales, and similarly
“models are switched when effects from the smaller scale become dominant”
in the opposite case. In effect this is what is done for the applications of
this project, but an attempt to combine the two models in one simulation
will also be done. An area of the computational mesh will be solved by a
RW model first, representing a small length scale, and this solution will be
used as input for the PDE solver. This approach requires a way to quickly
convert from a concentration to a distribution of walkers, and back. The
conversion is done by a conversion factor which will be named Hc (as it was
named by Plapp and Karma [11], though they used a conversion field) which
is introduced in equation (2.44).

Cij =
a

∆t
Uij (2.44)

For the most part, equation (2.44) will be rewritten to just one conversion
factor times the PDE solution, giving us some flexibility should we want to
add more dependencies in the conversion. As of now, the conversion factor,
Hc, is defined in equation (2.45). One “unit” of Uij will directly correspond
to Hc random walkers.

Hc =
a

∆t
=⇒ Cij = Hc · Uij (2.45)

Methods of combination

Effectively the problem is solved twice as the software stands now, both by
the PDE and by the RW model. These two solutions must be coupled, and
there are a few possibilities as to how this can be done.

• Regression
Some kind of regression can be used, where the solution from the RW

34 Some Theory Chapter 2

model is used as data points. This results in an expression that ap-
proximates the solution from the RW model. Alternatively, the average
of the two solutions can be done before the regression. The resulting
expression is used to calculate the solution over the area in question.

• Average
A simple average can be used. This will to some extent follow the
“correct” solution from the PDE method, ensuring some smoothness,
and have the fluctuating properties from the RW solution.

• Interpolation
This approach can ensure that the endpoints follow the solution outside
the relevant area, but requires choosing some points in stead of other
points from the RW solution.

• Replacing
Alternatively none of the above can be chosen, and the PDE solution
can simply be replaced by the RW solution. This might well be the
best approach.

2.5.2 The algorithm

The basic structure of the program is rather similar to the physical problem.
There is one dendrite-object which contains the PDE-solver for the normal
diffusion equation, with the possibility to use a random walk solver instead.
On the dendrite object spines can be placed, which in the physical world
are the receiving end of a synapse. Depending on what is being modeled,
synaptic input is modeled by randomly added spikes of some random num-
ber of molecules which spawn at the far end of the spine. In the overlapping
points where the spine is located on the dendrite mesh, the coupling is done
as follows: If a random walker in the spine comes in contact with the position
labeled as the “end” of the spine it is moved from the list of active walkers
to a list of walkers which have moved out of the spine. Similarly, at each
time-step a part of the PDE-solution corresponding to one walker will diffuse
into the spine with a certain probability. It might be desirable for a walker to
only be able to diffuse out of the spine with some probability as well, or for
the walkers which diffuse into the spine to have some drift term, but these
are minor updates and might be added later if needed.

There is also the possibility of modeling parts of the dendrite-mesh as
random walk (this can be done in 2D as well as 1D). This is done by choosing
some points on the mesh and sending the to the “AddWalkArea” method

Section 5 Combining the two solvers 35

which will map them to an index and set the initial condition for the walk.
Although anisotropy will follow into the random walk solver, by the method
provided by Farnell and Gibson [3]. At each time-step the solve-method of the
combined solver is called, which in turn calls the solve method for the PDE-
solver. The solution from the PDE-solver is used to calculate the number of
walkers by eq. (2.45) in each mesh-point on the PDE-mesh, and then give
each walker a random position in a square around its mesh-point (±∆x

2
).

Because the sum of the PDE-solution over the random walk area of the mesh
might be different from one time-step to the next (eq. 2.46) the conversion
from PDE-solution to random walker distribution must be done at every
time-step. The alternatives are to remove or add the difference at each time-
step, but this will require checking that each mesh-point has the “correct”
number of walkers and updating the number to correspond with the solution
from the PDE-solver. which is what we are doing already? Or the conversion
factor could be adjusted at each time-step. The latter is largely a bad solution
because it ruins transparency and might introduce even more fluctuations in
the solution. ∑

uni,j 6=
∑

un+1
i,j (2.46)

After the random walk integration the two solutions are combined by a sim-
ple average. A few other methods have been tested (see scetion 2.5.1) but
discarded. The average of the two solutions is then set as the new “initial
condition” for the next time-step, and the process repeats itself.

The results of these are inserted in the solution from the PDE using some
routine (e.g. the average of the two) and the time-step is done. A schematic
of the algorithm is provided in figure 2.1.

Figure 2.1: Schematic diagram of the algorithm.

2.5.3 Convergence rate

In chapter 2.4.4 the error that arises as a result of adding random walkers
on parts of the mesh was discussed. The amplitude of the fluctuations per
mesh-point was found proportionate to 1√

N
where N is the number of walkers

related to the mesh-point. Combining the two models means adding fluctu-
ations to the approximation to the exact solution. Seeing as this combined
solution is sent to the PDE-solver as an “initial condition” for the next time-
step we have made a compromise in accuracy. The error-estimate, which will
be defined later, is still dependent of ∆t, but the dependency is now of the

36 Some Theory Chapter 2

order O(
√

∆t). This also further supports the claim that there is no need to
find a very precise scheme to solve the PDE.
We will test this by doing a convergence test in time keeping the number of
walkers constant.

2.5.4 Potential problems or pitfalls

This section will identify and discuss a few obvious difficulties which might
arise in this project. As far as possible solutions or workarounds will be
presented, but some problems might not be solvable.

Different timescales

The PDE-solver will be operating with some time-step ∆t which will, de-
pending on the discretization of the PDE, have some constraints and will
definitely have an impact on the error. The walkers will, as we have just
seen, solve the diffusion equation as well, but with some different ∆t̃ which
is smaller than the time-step on the PDE level. Depending on the coupling
chosen between the two models this difference will have some effect or a
catastrophic effect on the error. Running some number of steps, N, on the
random-walk level should eventually sum up to the time-step on the PDE

level,
N∑
i=0

∆t̃ = ∆t. Section 2.5.5 shows that restricting the step length of the

walkers will improve the coupling between the two solvers as far as possible.

Boundary conditions

To combine the two models, some restricting boundary conditions must be
put on the random walkers. This is not usually done (as far as I have seen),
but not very difficult. Finding a boundary condition that accurately models
the actual system turns out to be quite straightforward. The assumption that
the number of walkers in the walk-domain is conserved for each PDE time-
step can be made, and thus no walkers can escape the domain. Implementing
perfectly reflecting boundaries solves this quite well. This means that the
flux of walkers out of a boundary is zero, which is the same as Neumann
boundary conditions on the PDE level.
Dirichlet boundaries can (probably) be implemented by adding or removing
walkers on the boundaries (or in a buffer-zone around them) until the desired
concentration of walkers is reached.

Section 5 Combining the two solvers 37

Negative concentration of walkers

In physical systems this problem will not arise seeing as a negative concentra-
tion does not make any sense. Mathematically, however an initial condition
which takes negative vaules still has a solution. The following is more of an
oddity than an actual problem.

The concentration of walkers is calculated as NP (x, t) where P (x, t) is
really only an estimate of the actual probability distribution, calculated by
dividing the number of walkers in one area x ± ∆x

2
by the total number of

walkers. Seeing as negative probabilities does not make sense, and neither
does a negative number of walkers, we will eventually run into some problems
if the solution of the PDE takes negative values (which it most likely will not
do). No good solutions have been found to this problem, but a workaround
consists of storing the sign of the solution over each time-step, converting
the absolute value to a distribution of random walkers and multiplying back
with the sign after the RW solution is done. This workaround has a problem
in that a transition from positive to negative value will lead to a “valley” in
the absolute-value solution. A normal PDE solution of this kind of initial
condition will very rapidly even out the “valley”, and so a value which should
have been zero (a node-point) will get some other value (say some fraction
of the conversion factor). This again leads to a larger discontinuity when
the solution from the RW model is multiplied by the sign again. Figure 2.2
illustrates this.

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

u(x,t)
abs(u(x,t))
0

(a)

0.0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.5

0.0

0.5

1.0

|u(x, t+∆t)|
signmap · |(u(t+∆t))|
u(x, t+∆t))

0

(b)

Figure 2.2: An illustration of the proposed workaround for negative concen-
trations and its problem (b).

38 Some Theory Chapter 2

Smooth solutions

A diffusion process is very effective when it comes to dampening fast fluctu-
ations, and so any solution of the diffusion equation will be smooth. When a
stochastic process is introduced, rapid fluctuations from one time-step to the
next might follow. In this case a dilemma arises; on the one hand there is the
smoothness of the solution to consider, on the other hand the stochastic term
was introduced believing that it adds detail to the model. The approach we
tried to use to this was to do some curve-fitting using both of the solutions.
A polynomial regression model was implemented in 1D, but regardless of
degree and what points were used, the result was a lot worse than just the
average of the two solutions. Another idea is to implement a cubic spline
interpolation over the area, but this too has its problems. An interpolation
forces the solution to have a value at the interpolating points, and seeing
as we cannot say for certain which value is correct how shall we pick the
interpolating points?

Number of time-steps on the random walk level

As the time-step on the PDE level is increased above the stability criterion of
the FE scheme towards more efficient sizes we are faced with the problem of
whether or not to increase the number of time-steps on the RW level. Strictly
speaking we do not have to do this, seeing as we adjust the step-length of the
walkers with respect to the time-step (see eq 2.50). As an initial value we
put the number of time-steps to 100, but this was more a guess of how many
are necessary for the central limit theorem to have effect than anything else.
The question really boils down to how we define our model, which we have
yet to do in an accurate way.

Random walks in 3D

Both 1 and 2 dimensional space are spanned completely by a random walk,
but space of 3 or more dimensions is not. This does not have to be a problem,
seeing as we have proved that the random walk fulfills the diffusion equation
(chapter 2.3.2) and we are not trying to span the complete 3d space, but
we could potentially meet some difficulties as a result of this property of the
random walk.

2.5.5 Relating step length to PDE time step

As section 2.3.2 shows, the probability of finding a walker at a position xi
after some N time-steps (on the walk-scale) is (in the limit of large N) given

Section 5 Combining the two solvers 39

as the Gaussian distribution. In this application, however, finding the walker
at an exact position is not of interest, but finding it in an interval around the
mesh-points sent to the walk-solver is. This interval is (for obvious reasons)
xi ± ∆x

2
where ∆x is the mesh resolution on the PDE level. The walk solver

will also run for some N time-steps on the random-walk scale (where N steps
on the random walk scale is the same as one step on the PDE scale). This
slightly modifies the distribution into

P (xi ±∆x, tn+1) =
1√

4πDN∆t̃
exp

(
(x±∆x)2

4DN∆t̃

)
(2.47)

Making the concentration of walkers C(x, t) = MP (x, t)

C(xi ±∆x, tn+1) =
M√

4πDN∆t̃
exp

(
(x±∆x)2

4DN∆t̃

)
(2.48)

For each PDE time-step the walkers are reset to have some new initial
condition. This is done because the concentration over the “walk-area” will
change with each PDE time-step. The point is that C(xi±∆x, tn+1) will be
dependent on the initial condition C(xi ±∆x, tn).

Equation (2.5) shows that the step-size on the random walk scale is de-
pendent on the variance in the actual steps (This is in principle the Einstein
relation).

σ2 = 〈∆x2〉 = 2DN∆t̃ =⇒ ∆t̃ =
〈∆x2〉
2DN

(2.49)

Equating this with 2.9 gives a first order approximation to the step-length, l

〈∆x2〉 = 4pqNl2 = 2DN∆t̃

l =
√

2D∆t̃. (2.50)

Of course this is assuming that a random walk algorithm of fixed step-
length is used.
Equation 2.50 is proportional to the square-root of the adjusted time-step.
We have already suggested that the error term from the RW simulation de-
pends on the number of walkers we use (or the conversion rate). This equa-
tion suggests that the error term also depends on the time step. Though this
might seem a bit frustrating at first glance, it answers a question asked ear-
lier; how many time-steps are needed at the RW-level. We have the intuitive
relation between the RW time-step, ∆t̃ and the PDE time-step through the
number of steps at the RW level, T :

∆t̃ =
∆t

T

40 Some Theory Chapter 2

Further, the error from the RW simulation was suggested to be proportional
to the square root of the time-step ε ∝

√
∆t̃ =

√
∆t
T
. Forcing the error to

behave as ε ∝ O(∆t) might be achieved by adjusting the number of time-
steps taken at the RW level (but actually not).

O(∆t) >

√
∆t

T
=⇒ T >

1

∆t
(2.51)

Combined with the demand to the number of walkers this will quickly
result in an extreme computational demand in order to force our model
to have first order convergence (not to mention second order convergence).
Fortunately, this demand will be ignored outside of verification because there
is little physical meaning left if the demanded number of walkers is used.

2.6 Geometry
Any finite difference method is problematic to solve on anything else than
a rectangular grid. Using an implicit FD method will add an additional
“demand” of having a square grid as well. Fortunately, using an implicit
solver will eliminate the stability issue.
The purpose of this project is to investigate the actual coupling of two models
for the same problem.
If we want to model diffusion on a general geometry by a FD method we
could transform the grid to a unit-square through a general transform.

r = T(q)

Here, r = (x, y) is the position in physical space, q = (ξ, η) is the position on
the unit-square that is the computational space and T is the transformation.
The transformation is achieved by the functions x(ξ, η) and y(ξ, η). After a
lot of math, including some differential geometry the diffusion equation in
computational space is found to still have the form

∂C

∂t
−∇ · J = 0

but the total flux vector J = f + φ now has the properties

∇ · f =
1

g
·
(
f · ∂
∂ξ

(
∂y

∂η
,
−∂x
∂η

)
+ f · ∂

∂η

(−∂y
∂ξ

,
∂x

∂ξ

))
∇φ =

1

g

(
φ · ∂

∂ξ

(
∂y

∂η
,
−∂x
∂η

)
+ φ · ∂

∂η

(−∂y
∂ξ

,
∂x

∂ξ

))

Section 6 Geometry 41

where g is the Jacobian of the transformation T. In other words, a whole new
and much more complicated equation must be discretized in order to solve for
a general geometry. Some idea of what the functions x(ξ, η) and y(ξ, η) are is
also required, and this information is generally not available. Furthermore,
there already exists Finite Element software which can take any geometry
as a mesh, and so a simpler way of using a more interesting geometry would
be to change discretization from FD to a finite element method, for example
in the open-source finite element software FEniCS. This is considered an
extension, and will not be covered here.

Chapter 3

Analysis

43

44 Analysis Chapter 3

This chapter will contain most of the numerical error analysis and some
of the discussion of this analysis as well as a recap of the methods used for
error analysis in general, and how they are adapted to this particular problem.

In the numerical setup chosen for this project some new error sources
might be introduced in addition to the normal errors introduced by numer-
ical solution of any equation (see section 2.4). When a part of the solution
acquired is replaced by the solution from a stochastic model, the initial condi-
tion to the next iteration in time will be changed. This might have a number
of effects on the final solution. Figure 3.1 shows the typical effects of solv-
ing an equation numerically. When a stochastic solution is imposed on top
of this again, it will lead to fluctuations around the approximations to the
solution at the new time-step which most likely worsens the approximation.
The aim of this chapter is to verify the implementation and investigate the
effects of adding a stochastic solution to a normal PDE solution.

0.0 0.2 0.4 0.6 0.8 1.0
time, [s]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u
(t
)

Error from numerical integration illustrated

un+1 = un − dt · e−t

u(t) = e−t

Figure 3.1: Illustration of how numerical errors appear. The dashed line
shows the numerical solution of the equation du

dt
= −e−t calculated with 6

points using a FE scheme, while the full line is the exact solution u(t) = e−t.
The numerical scheme approximates the derivative as a constant between
two points, an approximation which will become increasingly good as the
resolution improves.

Section 1 Introduction 45

3.1 Introduction

3.1.1 The error estimate

First and foremost the error measure, which will be denoted ε will be spec-
ified. Throughout this thesis the term error is used quite lazily, but unless
something else is specified we refer to the expression

ε(ti) = ||ue(ti)− u(ti)||2 (3.1)

where ue is an exact (manufactured) solution to the equation, and u is the
result from the numerical simulation. This error-estimate is used because it
is time-dependent, thus explicitly showing how the error evolves over time.
The notation

|| · ||2
denotes the L2 norm of · which is defined as

||M||2 =

√∑
i

∑
j

M2
ij

The error is calculated over the entire mesh, which will clearly show if the
error from the random-walk areas are dominating, or (otherwise) how the
PDE-scheme is holding up. Another error estimate that will be used later is
the integrated norm of the previously mentioned error estimate. This will be
used for the convergence tests to make sure that no effects of simulating for
a long time are overlooked, and is defined as

ε =

√∑
i

h2ε(ti) (3.2)

where h is the parameter in question (usually ∆t).

3.1.2 Verification techniques

There are quite a few ways to verify an implementation. This thesis will
focus on three which are considered adequate for no particular reason. Un-
fortunately some of the tests require isolating one error-term, meaning that
the test works better if the stability criterion for the FE scheme is broken.
The result of this is that some of the tests are only done on the BE scheme.
Fortunately, the BE scheme will be used for the actual simulations and will
see more thorough verification.

46 Analysis Chapter 3

• Method of manufactured solutions
A normal way of checking that our scheme of choice is implemented cor-
rectly is by constructing an exact solution to the equation and checking
that the error is of the expected order. Since the software contains both
an explicit FE scheme and an implicit BE scheme they will both be ver-
ified alongside one another. We will start with the simplest diffusion
equation (eq. (2.14)) and add complexity until the expression verifies
all parts of the implementation. Both schemes are expected to have
an error-term of the order of ∆t, which in the FE case is limited by
a stability criterion. Next, the initial condition for a simulation is set
to the exact solution at t = 0, and the simulation can be run with
different parameter values. This approach makes it trivial to calculate
the error, seeing as the solution is known, and to check that it takes
the expected values.
There are some variations of this method which should be mentioned.
Setting the manufactured solution to a constant (or a linear polyno-
mial if the boundary conditions allow it) should eliminate the error
completely since the derivative is zero which eliminates the numerical
error. This is also a nice way of verifying that the scheme conserves
energy (or matter for that matter).

• Exact numerical solutions
For the explicit schemes, exact solutions to the scheme itself can be
found seeing as the scheme is a difference equation. The calculations
are shown step-by-step in section 3.2.3.

• Convergence tests
This must be combined with the manufactured solution, but takes a
slightly different approach to quantifying the error estimate. We start
by calculating some form of error estimate, and chose a value to rep-
resent the error of the entire simulation. This could be the maximum
error for the entire simulation, or an integrated measure. Multiple sim-
ulations will be done while improving the parameter of interest, for
example how the size of the time-step influences the error. Finally, a
number indicating the improvement in the error estimate by improv-
ing the parameter in question is calculated. This number indicates the
order of convergence which is one for FE and BE since the error goes
as O(∆t), and two for our approximation to the second derivative in
space since the error goes as O(∆x2). A convergence rate of 1 means
that halving the parameter will (roughly) halve the error, while the
same reduction for a second order convergence will reduce the error by

Section 2 Verification of PDE solvers 47

4.

3.2 Verification of PDE solvers
To verify the implementation of the PDE-solvers, the steps outlined in the
previous section will now be performed. The approach will be to begin the
testing on the simplest diffusion equation using the full implementation, and
add complexity along the way. This is another way of verifying that the
implementation is correct since the average of the anisotropic diffusion coef-
ficient at two mesh-points is the same as the diffusion constant if there is no
change over the mesh-points. Effectively this is the same as having only a
constant. The same applies to setting the drift-velocity equal to zero.

Since both the FE and BE discretization have been implemented both
of them will be tested, but for the most part the BE discretization will be
used in simulations because of its unconditional stability. For most of the
tests the exact (manufactured) solution will be equation (3.3) which satisfies
the diffusion equation if the diffusion constant is 1 and x ∈ [0, 1]. In 1D the
solution will be correct since y = 0 over the entire mesh.

e−π
2t cos(πx) cos(πy) + 1 (3.3)

All of the verification on the PDEs will be done without adding random
walkers. The implementation of these will be done individually, along with
some tests of the combined solver in the end.

3.2.1 Manufactured Solutions

As mentioned the solution

u(x, t) = e−tπ
2

cos(πx) + 1 (3.4)

is chosen because it fulfills the chosen boundary conditions. Equations (3.5)
and (3.6) prove that the manufactured solution does indeed fulfill the diffu-
sion equation (eq. 2.14).

∂

∂t
e−tπ

2

cos(πx) + 1 = D
∂2

∂x2
e−tπ

2

cos(πx) + 1 (3.5)

−π2e−tπ
2

cos(πx) = −π2e−tπ
2

cos(πx) + 1 (3.6)
=⇒ 1 = 1

The error in space is determined by two factors, the actual error caused
by the approximation to the second derivative, which is of the order of ∆x2

48 Analysis Chapter 3

and, in the FE case, the error term coming from the time derivative due to
the stability criterion (eq. 2.4.3), which is also of the order ∆x2.
Figure 3.2 shows error and convergence plots for the FE scheme in 1D. For
longer simulations, the analytic solution is expected to reach a steady state
which is found in the limit of large t,

u(x, t→∞)→ e−∞ cos(πx) + 1→ 1 (3.7)

The numerical scheme should be able to represent this to machine precision
(10−16), meaning that the numerical solution should start converging to zero
after some number of times steps, but this might depend on how the deriva-
tives as estimated so we say that it should in the very least stabilize. The
error plots in Figure 3.2a clearly show that the error tends to zero as the
steady state is reached. As for the convergence, it is not perfect, but it could
have been worse. There might be some effects from the spatial error which
influences the error, but due to the stability criterion the time step cannot
be increased beyond ∆x2

2
which prevents isolating the error from the time

derivative. Considering the tests which will be done later with respect to
the numerical exact, the scheme seems to be performing fairly good, if not
perfect.

0 500 1000 1500 2000 2500
timestep no.

0.00

0.01

0.02

0.03

0.04

0.05

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.0003125

dt = 0.02
dt = 0.005
dt = 0.00125
dt = 0.0003125

(a)

0.000 0.005 0.010 0.015 0.020 0.025
dt

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

r

Convergence rate

(b)

Figure 3.2: Numerical error for 1D Forward Euler discretization of the PDE.
Nothing else is done to the simulation.

Testing of more advanced implementations requires some additional cal-
culations in order to still have the same manufactured solution as before.
The variable diffusion coefficient

D(x) = πx

Section 2 Verification of PDE solvers 49

is introduced and the drift term is still zero. The new source term required
is

−π2 exp
(
−π2t

)
cos (πx) = −π exp

(
−π2t

) ∂

∂x
πx sin(πx) + f(x, t)

−π2 cos (πx) = −π2 (sin(πx) + πx cos(πx)) + f̃(x)

f̃(x) = π2 (sin(πx) + cos(πx)(πx− 1))

where f(x, t) = exp (−π2t) f̃(x). Figure 3.3 shows the error norm of the
result of simulations of this equation with different values of ∆t.

0 10 20 30 40 50
timestep #

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

er
ro
rn
or
m

dt = 4e-05

(a)

0 10 20 30 40 50
timestep #

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

er
ro
rn
or
m

dt = 8e-05

(b)

Figure 3.3: Verification of anisotropic diffusion equation implementation

Again, the error is of the order of ∆t and is roughly halved by halving
∆t.

3.2.2 Convergence Tests

The next step in testing the implementation will be to perform a convergence
test in time. The spatial convergence test is toned down because an incorrect
implementation of the spatial derivative would be clearly visible both in the
visualization of the simulation (the solution blows up), and in the error plot
seeing as the spatial error would dominate. As mentioned, the convergence
tests are carried out by doing several simulations with different values for ∆t
and comparing the errors by equation 3.8.

r =
ln(Ei+1/Ei)

ln(∆ti+1/∆ti)
(3.8)

50 Analysis Chapter 3

A result of such an experiment for the FE scheme using the ∆t values listed
below is found in Figure 3.4a. The expected value of r is approximately 1.
The result is not perfect, but still close to 1. For the BE scheme we get
the convergence rate shown in Figure 3.4b. Again, the expected order of
convergence is 1 and this time the result is almost perfect.

−17 −16 −15 −14 −13 −12 −11 −10 −9
Hc (conversion rate)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

r

Convergence rate

(a) Convergence test for the FE scheme.
The x axis is ln(∆t).

0.00 0.01 0.02 0.03 0.04 0.05 0.06
dt

0.0

0.2

0.4

0.6

0.8

1.0
r

Convergence rate

(b) Convergence test for the BE scheme.

Figure 3.4: Convergence tests for explicit and implicit schemes solving the
simple diffusion equation (eq. (2.14)).

We can also do a convergence test, equal to the one we did in 1D, to check
that the scheme converges to 1 (by equation (3.8)) for smaller ∆t in 2D as
well. The results of this test are shown in Figure 3.5 and it does converge
nicely to one.

Section 2 Verification of PDE solvers 51

−20 −18 −16 −14 −12 −10 −8
Hc (conversion rate)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
r

Convergence rate

Figure 3.5: Convergence test for the FE scheme in 2D using ∆t ranging from
the stability criterion ∆x∆y

5
to the same ratio divided by 100000 in increments

of 10−1.

Spatial convergence

Figure 3.6 shows the converge for the spatial error. This test is done only
using the implicit scheme since it is an advantage for the spatial error, which
is of second order, to be larger than the error from the time discretization.
Because of the stability criterion for the FE scheme it will break down for
these tests, and not give the desired results. Another complicating factor
is having the time step sufficiently smaller than the spatial resolution. As
Figure 3.6 shows, the test was not perfect, however it starts out with a
convergence of almost 2 done on a coarser mesh. The normal error plot is
also included in the figure to illustrate that the improvement is significant.

52 Analysis Chapter 3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
timestep no.

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.000125

dx = 0.1
dx = 0.05
dx = 0.025

(a) Error plot

0.05 0.06 0.07 0.08 0.09 0.10
dx

1.2

1.3

1.4

1.5

1.6

1.7

1.8

r

Convergence rate

(b) Convergence test

Figure 3.6: Error plot (a) and convergence test (b) focusing on the spatial
error term. This test requires the time step to be much smaller than ∆x2

in order for the spatial error to dominate. As is apparent from figure b,
the convergence test is difficult to get right. Notice, however that the first
value in the convergence test is close to 2, and that the second one is clearly
larger than 1 suggesting that other effects might be at play. The test was
done in 1D using the BE discretization with ∆t = 1

8000
for all values of ∆x.

This value is problematic because it is only a factor 1
5
smaller than ∆x2 for

∆x = 1
40

which is the last simulation.

3.2.3 Exact numerical solution

Both schemes can be reformulated as difference equations, and will therefore
have some form of exact solution. Comparing a simulation to the expected
exact numerical solution is a good way to verify that the implementation
does what it is expected to do. The numerical exacts are expected to be
represented to more or less machine precision, though some deviances might
occur.

As was done in section 2.4, the schemes must first be reformulated as a
theta-rule discretization

un+1 − un
∆t

= θD∆tun+1
xx + (1− θ)D∆tunxx (3.9)

where unxx denotes the double derivative of u at time step tn.

The FE scheme

Inserting θ = 0 in equation (3.9) yields the FE scheme. The first few itera-
tions are written out as

Section 2 Verification of PDE solvers 53

u1 = D∆tu0
xx + u0

u2 = D∆tu1
xx + u1 = D∆t

[
D∆tu0

4x + u0
2x

]
+ u0

= (D∆t)2 u0
4x + 2D∆tu0

2x + u0

u3 = D∆tu2
xx + u2 = D∆t

[
(D∆t)2 u0

6x + 2D∆tu0
4x + u0

2x

]
+ (D∆t)2 u0

4x + 2D∆tu0
2x + u0

= (D∆t)3 u0
6x + 3 (D∆t)2 u0

4x + 3D∆tu0
2x + u0

u4 = D∆tu3
xx + u3 = . . .

= (D∆t)4 u0
8x + 4 (D∆t)3 u0

6x + 6 (D∆t)2 u0
4x + 4D∆tu0

2x + u0

This can be generalized to

un+1 =
n∑
i=0

(
n

i

)
(D∆t)i u0

2ix (3.10)

where the initial condition is known from equation (3.4)

u0
2ix = (−1)i π2i cos(πx)

Inserting the initial condition results in the exact solution to the FE
scheme

un+1 =
n∑
i=0

(
n

i

)
π2i (−1)i (D∆t)i cos(πx) (3.11)

Notice that the analytical spatial derivative has been used rather than
the approximation to the spatial derivative. In the same way as for the time
derivative, the approximation to the spatial derivative must be inserted.

u0
xx =

1

∆x2
(cos(π(x+ ∆x))− 2 cos(πx) + cos(π(x−∆x)))

=
2

∆x2
(cos(π∆x)− 1) cos(πx)

u0
4x = [u0

xx]xx
1

∆x2

[
u0
xx

cos(πx)
(cos(π(x+ ∆x))− 2 cos(πx) + cos(π(x−∆x)))

]
=

4

∆x2
(cos(π∆x)− 1)2 cos(πx)

. . .

This pattern continues, and the exact numerical solution can be expressed
by equation (3.12) in 1D for the previously mentioned initial condition.

un+1 =
n∑
i=0

(
n

i

)
(D∆t)i

2i

∆x2i
(cos(π∆x)− 1)i cos(πx) (3.12)

54 Analysis Chapter 3

The FE scheme is expected to represent this solution more or less to
machine precision, at least to 15 digits. There are, however two issues with
the solution (3.12):

• ∆x2i will quickly tend to zero, and the computer will interpret it as zero.
This will cause division by zero, which again results in “Not a number”
(nan) and ruins the simulation. This can be fixed rather simply by
testing if ∆x2i > 0 and returning zero if the test returns false.

•
(
n
i

)
goes to infinity for large n and i. The computer can only repre-

sent numbers up to ∼ 10308, which limits the number of steps to 170
since n! > 10308 for n > 170. The argumentation for dropping the
troublesome terms is given below.

As a side note, equation (3.12) illustrates how the stability criterion (eq.
2.4.3) comes into place. The solution used in the derivation of the stability
criterion assumes an amplification factor An to replace the exponential am-
plification in the actual solution. This amplification factor can be found in
equation (3.12) as (

2D∆t

∆x2

)i
Inserting a time step larger than the stability criterion (∆t ≤ ∆x2

2D
) will make

the amplification factor A larger than one which in turn will make the solution
blow up. This also illustrates why the terms where

1

∆x2i
→∞

can be dropped. By the stability criterion, the time step will cancel out ∆x2,
and the result will be some number smaller than 1 raised to a rather large
power, i, resulting in something comparable to zero.

The results from testing the FE scheme are found in Figure 3.7. We see
that the error in the worst case is about an order of magnitude worse than
expected. This is most likely due to the fact that we are cutting part of the
solution, and over several time steps the error we do might accumulate. This
is most likely a

Section 2 Verification of PDE solvers 55

0 20 40 60 80 100 120 1400

1

2

3

4

5

6

71e−14

Figure 3.7: Error plot for 1d FE scheme compared to the exact numeri-
cal solution 3.12 with a few modifications, like ignoring terms where ∆x is
truncated to zero, added.

The exact numerical solution to the 2d diffusion equaiton with eq 3.13 as
initial condition is found by using the same method as for the 1D case. It is
listed in equation (3.14), and the FE scheme is expected to reproduce this
to more or less machine precision as well.

u(x, y, t = 0) = cos(πx) cos(πy) (3.13)

The same problems with truncation of small values apply to a larger
degree than in the 1D case, however and as a result some accumulation of
error terms might be expected.

un+1 =
n∑
i=0

(
n

i

)
(D∆t)i

[
2i−1 cos(πx) cos(πy)

(
(cos(π∆x))i

∆x2i
+

(cos(π∆y))i

∆y2i

)]
(3.14)

The result of a test simulation of this is shown in Figure 3.8. Again,
as was the case in 1D, the error is very small and starts out at machine

56 Analysis Chapter 3

precision. It does, however increase with time as the truncated terms begin
to accumulate, and even more so than in the 1D case. We should, in other
words, be pleased that the error starts out with machine precision, and stays
small for the amount of time steps we can simulate and still have something
to compare it with.

0 20 40 60 80 100 120 1400.0

0.5

1.0

1.5

2.0

2.5

3.0

3.51e−13

Figure 3.8: Numerical solution from the FE scheme versus the exact numeri-
cal solution of the FE scheme in 2D. Parameters of importance are ∆t which
is almost on the stability criterion, ∆t = ∆x∆y

5
= 8 · 10−5 and the diffusion

coefficient D which must be D = 1
2
in order to fulfill the diffusion equation.

The BE scheme

For the BE scheme the exact numerical solution is more implicit than for the
FE scheme. As for the FE scheme, the numerical exact solution is simply the
solution to the difference equation that the PDE is rewritten as. However,
the BE scheme is implicit and results in a system of linear equations. This
was derived in section 2.4.2 and the resulting linear system is

Section 2 Verification of PDE solvers 57

Mun+1 = un

The solution to this linear system is trivial

un+1 = M−1un

though it is an inefficient way of solving the system in this case. As
indicated in section 2.4.2 all the information about the system lies in the
mass matrix M, and this matrix must be carefully assembled. It is then
preconditioned and the system is solved by the “tridiag” solver mentioned
earlier. In principle this is the same as doing and storing the inverse of
M and then multiplying this inverse by the solution at the previous time-
step. Another way of doing this is by raising M to the required power and
then doing the multiplication with the initial condition as stated in equation
(3.15).

un+1 =
(
M−1

)n+1
u0 (3.15)

Equation (3.15) is the numerical exact solution to the BE scheme, but it
has a few problems compared to the exact solution to the FE scheme. Testing
is done by storing the inverse of the assembled matrix, solving eq. (3.15) for
the desired number of steps and comparing the solution with the result of a
simulation. The problem with this approach is that the inverse of M gives
a lot of round off errors, especially with entries of 10−20 and smaller. These
entries would be zero if the analytical inverse was taken, but are clearly not
zero in the matrix. Terms of this magnitude give rise to a lot of potential
uncertainty, and the result is that the desired accuracy must be reduced.
Figure 3.9 shows the accuracy of the simulation compared to the result of
a simulation with the BE discretization. Although the accuracy is some 5
orders of magnitude worse than the numerical exact for the FE scheme, it is
still not too bad.

58 Analysis Chapter 3

0 50 100 150 200 250 300
timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2
er

ro
rn

or
m

1e−9 Error compared to numerical exact

Figure 3.9: Error plot showing the norm of the difference between the nu-
merical exact solution for the BE scheme in 1D (eq. 3.15) and a simulation.
The error is not machine precision, but significantly smaller than ∆t which
for this simulation is ∆t = 0.01. This increased error most likely originates
in the many roundoff errors in the inverted matrix where a lot of terms which
analytically would be zero are represented as 10−16 and smaller.

A nice property of the numerical exact solution to the BE scheme is that
it generalizes to the 2D scheme. Figure 3.10 shows the accuracy of the BE
scheme when compared to its numerical exact solution. As for the 1D case,
there will be some round-off errors which will have an effect on the accuracy.

Section 3 Testing the Random walk implementation 59

0 50 100 150 200 250 300
timestep

1.0

1.5

2.0

2.5

3.0

3.5
er

ro
rn

or
m

1e−10 Error compared to numerical exact

Figure 3.10: Error plot showing the norm of the difference between the nu-
merical exact solution for the BE scheme in 2D (eq. 3.15) and a simulation.
The error is not machine precision, but significantly smaller than ∆t which
for this simulation is ∆t = 0.01. This increased error most likely originates
in the many roundoff errors in the inverted matrix where a lot of terms which
analytically would be zero are represented as 10−16 and smaller.

3.3 Testing the Random walk implementation

The RW implementation will be verified using the same techniques that were
used to verify the PDE solvers with the exception of a numerical exact so-
lution since there is none. However, the initial condition used for the PDE
solvers cannot be represented to a satisfying accuracy by a distribution of
walkers. A Heaviside step function on the other hand can be perfectly rep-
resented by said distribution and is defined in equation (3.16).

H(x− a) =

{
1 x ≥ a

0 x < a
(3.16)

In order to verify the RW implementation an initial distribution of walkers
which follows the Heaviside step function is given to the program, and a
simulation is run for some number of time steps. An exact solution must
also be found to the diffusion equation (eq. 2.14) for error calculations and
this is done by separation of variables. We have

60 Analysis Chapter 3

∂u

∂t
= D

∂2u

∂x2
(3.17)

∂u(0, t)

∂x
=
∂u(1, t)

∂x
= 0 (3.18)

u(x, 0) = H

(
x− 1

2

)
(3.19)

D = 1 (3.20)

and

u(x, t) = F (x)T (t) =⇒ T ′(t)

T (t)
=
F ′′(x)

F (x)

where the primes denotes the respective derivatives. We separate the equa-
tion using a separation constant λ

T ′(t)− λT (t) = 0

=⇒ T (t) = C exp(λt)

F ′′(x)− λF (x) = 0

=⇒ F (x) = C1 exp(
√
λx) + C2 exp(−

√
λx)

where C, C1 and C2 are arbitrary constants. Choosing λ = −µ2 lets us
rewrite the spatial solution in terms of sines and cosines. There are really
three choices here; λ = −µ2, λ = µ2 and λ = 0, but the first is chosen because
the results of the other choices are unphysical or uninteresting. Inserting
λ = −µ2 into the expression found for F (x) gives

F (x) = a cos(µx) + b sin(µx)

The boundary conditions result in

F ′(0)T (t) = F ′(1)T (t) = 0

Since the time dependent solution cannot be exactly zero and is indepen-
dent of position by construction (C exp(λt)|x=0 = C exp(λt) 6= 0), the first
derivative of the spatial solution must be zero at the boundaries

F ′(x) = −aµ sin(µx) + bµ cos(µx)

F ′(0) = −aµ sin(0) + bµ cos(µx)

= bµ cos(µx) =⇒ b = 0

F (1) = a cos(µ) =⇒ µ = nπ

Section 3 Testing the Random walk implementation 61

Which suggests that a Fourier series in cosines is the solution to the equation,
and it will look like this.

u(x, t) = a0 +
∞∑
n=1

an exp
(
−(nπ)2t

)
cos(nπx) (3.21)

The coefficients are found by approximating the initial condition

a0 =

1∫
0

H(x− 0.5)dx =
1

2

an = 2

1∫
0

H(x− 0.5) cos(nπx)dx

= 2

1∫
0.5

cos(nπx)dx

=
2

nπ
[sin(nπx)]10.5

=
2

nπ
sin(nπ)− sin(

nπ

2
)

=
2 sin(nπ

2
)

nπ

an =
2

πm
(−1)m ; m = 2n+ 1

which gives us the final solution

u(x, t) =
1

2
+
∞∑
m=0

2(−1)m

mπ
e−(mπ)2t cos(mπx) (3.22)

This is the manufactured solution the simulations will be tested against for
the verification of the RW implementation.

The convergence test shown in Figure 3.12 suggests that the convergence
rate for random walks follows the proportionality in equation (3.23).

ε ∝ Hc
−1
2 (3.23)

This relation says that while increasing the number of walkers will in fact
reduce the error, the convergence is very slow. Should we wish to do so, we
can force the error to O(∆t2), but this will be extremely inefficient. In fact
we can find the relation as Hc ∼ ∆t−2 for ε ∼ O(∆t), and Hc ∼ ∆t−4 for

62 Analysis Chapter 3

ε ∼ O(∆t2).
Clearly there will be enough trouble getting the scheme to recreate first order
convergence where a relatively “kind” simulation which fulfills the stability
criterion for the FE scheme using a spatial resolution of ∆x = 1

10
demands

Hc =
1

∆t2
≥ 2D

∆x4
= 2D · 104 (3.24)

walkers per unit per mesh point. Simply improving the spatial resolution by
a factor of 10 will increase the demand for walkers by a factor of 104

0 100 200 300 400 500
timestep no.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.025

dt = 0.1
dt = 0.05
dt = 0.02
dt = 0.025

(a)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
dt

0.0

0.2

0.4

0.6

0.8

1.0

r

Convergence rate

(b)

Figure 3.11: Error plot (a) and convergence test (b) for 1D RW solver using a
Heaviside step function as initial condition. In these tests both the time step
and the conversion factor are changed for each simulation, and the conversion
factor follows the previously proposed limit Hc ≥ 1

∆t2
. For each ∆t the RW

simulation does 250 steps with a step length calculated from equation (2.50).
The expected convergence rate is 0.5, and to some extent this is achieved
here, note however that due to fluctuations in the solution getting a good
error measure is difficult and beyond our control.

Section 4 Testing the combined solution 63

0 50 100 150 200 250 300
timestep no.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.05

Hc = 300
Hc = 500
Hc = 1000
Hc = 5000
Hc = 10000

0 1000 2000 3000 4000 5000
dt

0.0

0.2

0.4

0.6

0.8

1.0

r

Convergence rate

Figure 3.12: As a comparison to Figures 3.11 this test has been done for the
same 1D Heaviside step function as initial condition, but keeps the time step
fixed at ∆t = 0.05 and increases the conversion factor. The convergence rate
(fig. b) is worse than for the time convergence test, and seems to reach a
limit where increasing the number of walkers has little effect on the error.

3.4 Testing the combined solution

This section will test how combining the RW model with the PDE model
affects the error, and whether it is possible to make the error term have
first order convergence. As will be discussed in chapter 4.1 there are many
candidates as to the combination of the solutions, but it turns out that
simply replacing the solution in the relevant area with the solution from a
RW simulation before the PDE integration is done is sufficient.

A scientific theory should be as simple as possible, but no
simpler

It will therefore be unnecessary to add any fancy curve fitting when it is not
needed.

Before we start with the verification, however, a simplified problem which
in principle is the same as the diffusion - RW problem, will be presented.

3.4.1 A simplified version of the algorithm

Monte Carlo (MC) methods are immensely important in modern computa-
tional science (reference), and can be used to solve integrals as well as random
walks. As a simplified analogy to our method for solving the diffusion equa-
tion we ca look to the Ordinary Differential Equation (ODE) in equation

64 Analysis Chapter 3

(3.25).
∂f

∂x
= g(x) , x ∈ [a, c] (3.25)

Equation (3.25) is easily solvable (see eq. (3.26)). For the sake of illustration
we also specify that g(x) = 1

x
and divide the integral in two parts, introducing

b ∈ (a, c).

f(x) =

b∫
a

g(x) dx+

c∫
b

g(x) dx (3.26)

This is a case where we have complete control over all parts of the solution
which is f(x) = f(b) − f(a) + f(c) − f(b), and we can solve the two parts
of the integral in two different ways; by the midpoint method and by MC
integration, respectively. The convergence rates of these methods are 2 and
0.5 respectively. By the relation found in chapter 2.5.1 (eq. (2.45)) the
number of MC samples should be proportionate to the resolution used by
the midpoint-rule to the power of four.

1√
N
' ∆x2

N ' 1

∆x4
= N4

x

The following output is from a program (donated) by Hans Petter Langtan-
gen which does the required integration and calculates the convergence rates.
It uses the relation described, but multiplies with a constant, giving us

N = 2000×N4
x (3.27)

Section 4 Testing the combined solution 65

N_x N_MC e r r o r MC_error MP_error
1 2000 (1) 2 .650E−02 2 .648E−02 2 .391E−05
2 32000 (1) 7 .392E−03 7 .433E−03 −4.136E−05
4 512000 (1) 1 .918E−03 1 .927E−03 −8.954E−06
8 8192000 (8) 4 .683E−04 4 .866E−04 −1.832E−05

16 131072000 (131) 1 .176E−04 1 .220E−04 −4.320E−06

Convergence r a t e s
t o t a l MP MC
−1.84 −1.83 0 .20
−1.95 −1.95 −0.55
−2.03 −1.99 0 .26
−1.99 −2.00 −0.52

The convergence rate for the whole integral is roughly 2 which is what we
expect. This suggests that the idea behind the algorithm is sound.
Another thing to notice is the convergence rate of the MC method which
is sort off all over the place, this illustrates how difficult it is to verify the
simulations. As the listed output and equation (3.27) shows, the number
of walkers or MC samples grows very fast making it computationally very
demanding to do the calculations.

3.4.2 Introducing walkers

First of all, using random walkers on parts of the mesh will have a consider-
able, negative impact on the error estimate. As we have discussed before, the
solution from the random walkers will fluctuate around the “correct” (it is
in fact correct while verifying) solution with amplitude proportional to 1√

Nij

which will depend on the PDE-solution in the mesh-point. It will also, as
demonstrated in chapter 3.4.1, be possible to force the combined solution to
have the desired properties in terms of error-estimates but at considerable
computational cost. The various error tests will therefore be carried out us-
ing only the implicit scheme since the time-step can be chosen more freely,
thus reducing the required number of walkers.
Keeping in mind that the spatial error goes like ∆x2 the time-step should be
chosen so that ∆t > ∆x2 to make sure the error from the time derivative is
dominant. Figure 3.13 shows the results of a test where ∆x was fixed at 1

100

and both the time step and the conversion rate for walkers were improved
over three simulations. The figure shows that most of the fluctuations are
irrelevant in the beginning of the simulation, but the become increasingly
more important as steady state is reached. A convergence rate of 1 is also

66 Analysis Chapter 3

reached, suggesting that the walkers are converging to the PDE solution.

0 50 100 150 200 250 300
timestep no.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

dt = 0.05
dt = 0.01
dt = 0.005

(a)

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
dt

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

r

Convergence rate

(b)

Figure 3.13: 3.13a shows the error plot for a test where ∆x was fixed at
∆x = 1

100
and ∆t was reduced from 0.05 to 0.01 and finally to 0.005. The

conversion rate, Hc was updated for each simulation to have the value Hc =
1

∆t2
, meaning the error from the walkers should be smaller than the error from

the time derivative. Walkers are placed on 10% of the mesh from x = 0.4 to
x = 0.5. 3.13b shows the convergence rate in time for the same test.

3.4.3 Increasing the time step and the relative size of
walk-area

Now that we have an estimate of how to adjust the step length of the walkers
in order to adjust for the time step, ∆t, on the PDE level we would like to
investigate the actual effects of running the simulation with a larger time
step to verify our calculations. First off all, Figure 3.14a shows the error
norm of a simulation of the simplest diffusion equation (2.14) discretized by
the BE scheme using a time step which would make the FE discretization
unstable (There is something strange about its convergence). Figure 3.14b
shows the same simulation for various conversion parameters for the random
walk. These simulations have input from the random walk model on some
20% of the mesh points. As a comparison Figures 3.15a and 3.15b have 5%
and 35% of the mesh points affected by walkers. An interesting property of
both these figures is the instability in the error for very low conversion factors.
There seems to be a limit as to how large of an inaccuracy the scheme can
handle and still produce meaningful results. Another thing to notice from
these figures is that a larger relative area of walkers implies more walkers are
required in order to make the scheme as exact as it will get. Apparently, the

Section 4 Testing the combined solution 67

introduction of walkers will give an increased error no matter how many are
used.

0 200 400 600 800 1000
timestep no.

0.000

0.002

0.004

0.006

0.008

0.010

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.001

Deterministic

(a)

0 200 400 600 800 1000
timestep no.

0.00

0.05

0.10

0.15

0.20

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.001

Hc = 100
Hc = 1000
Hc = 10000

(b)

Figure 3.14: Error for 1D BE scheme combined with RW solver using increas-
ing number of walkers, but at most 1% of the required number. In figure
b there has been added walkers to the solution in the area x ∈ [0.5, 0.7]
with ∆x = 1

50
, which adds up to 20% of the mesh. Compared to only the

deterministic error in a, the 1% simulation is not that bad.

0 100 200 300 400 500
timestep no.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

Deterministic
Hc = 100
Hc = 1000
Hc = 10000

(a) Having walkers on 5% of the mesh
points.

0 100 200 300 400 500
timestep no.

0.00

0.05

0.10

0.15

0.20

0.25

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

Deterministic
Hc = 100
Hc = 1000
Hc = 10000

(b) Having walkers on 35% of the mesh
points.

Figure 3.15: The effect of increasing the size of the walk area for a fixed
∆t = 0.05 and ∆x = 0.01 using the BE discretization.

The effects of changing the time step have also been investigated, and the
results are shown in Figure 3.16. This test illustrates that the step length
tweaking derived in section 2.5.5 works since the error stabilizes around the

68 Analysis Chapter 3

size of ∆t and the fluctuations seem to be around
√

1
N

as predicted.

0 100 200 300 400 500
timestep no.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

er
ro
rn
or
m
 (l
2)

Error plot; dt = 0.005

dt = 0.05
dt = 0.1
dt = 0.005

Figure 3.16: Error norm of three tests where the spatial resolution was fixed
at ∆x = 1

10
and the time step and conversion factor were changed. ∆t started

at the stability criterion for the FE scheme ∆t = 0.5 ·∆x2 and was increased
up to ∆t = ∆x, maintaining the demand of Hc = 1

∆t2
for all the tests.

Chapter 4

Software

69

70 Software Chapter 4

4.1 About

The current version of the software (14.02.14) works in the following way.
Various parameters are specified in a python-script which calls the program.
After initialization, where anisotropic diffusion constant, initial condition and
areas of combined solution are set up we start solving the equation (using
the implicit BE scheme). At each time-step we call the Solve-method of the
combine-class which in turn calls the solve-method of the PDE-solver, cal-
culates the number of walkers by the conversion-rate, gives them a random
position in proximity to the coarse-grained PDE-mesh-point we are looking
at, and writes this position to a file. The random walk program is then called
with some parameters. This program reads the file with walker-positions,
advances some specified number of time-steps and writes the final positions
to the same file it read. The main program now reads this file, maps the
walker-positions back to the coarse-grained PDE-mesh and converts the spa-
tial distribution of walkers to a concentration distribution. Here we are faced
with a few choices with respect to the combination of the two solutions we
have for the same area:

• Some form of least squares fitting could be done. A polynomial regres-
sion was developed, but tests indicate that it is not a good solution.

• Cubic spline interpolation might be slightly better seeing as we force the
derivatives to be equal at the end-points. Interpolation forces the fitted
curve to take the measured values at the interpolation-points, and so
we must chose only some of the points to be used by the interpolation
in order for there to be a difference. Immediately we are faced with
the problem of which points to use and which to throw away. If we
consistently chose the points which are closest to the PDE-solution
(and the end-points which must be included for smoothness) we might
as well not include a random walk model, and vice versa.

• We could use only the result from the random walk model

• Some sort of average might also help us. There are many to chose from,
both arithmetic and geometric and with different kinds of weighting.

Intuitively, I find it better to use either an average or only the random walk
result. At present (14.02.14) the simplest arithmetic mean is implemented
at each mesh-point.
After each time-step the program also writes the combined solution on the
coarse-grained mesh to a unique file.

Section 3 Adaptivity 71

The python script also does some other more or less clever stuff at each run.
This is described in the appendix as a form of debugging A.2.

4.1.1 Limitations

As with any software there are limitations. The limitations discussed in this
chapter will be with regard to physical problems, and not memory or CPU
limitations which are described later.
Assuming the dendritic spines stuff will be the final application:
First of all, to specify a source function, one must program it in the Diffusion
class (Diffusion::f()). This might be fixed in a later version using inheritance.
The geometry is, currently, limited to a square. Of course we can argue that
we have scaled the size to a unit square, but as discussed in chapter 2.6 the
actual geometry remains a unit square. Furthermore the same issue arises
on the random walks.
As of now, it is unclear if 3D-modeling is supported. This is actually a smaller
issue since there is usually little more to learn from switching from 2D to 3D.
In any case, the extension to 3D is most likely not very hard, provided we
use an array of slices from the cubic matrix describing the solution.

4.2 Adaptivity

There are two adaptive parts of the software. First of all, the number of
walkers which depend on the concentration, or the solution the the PDE in
the relevant area. This must change in order to keep physical meaning and
give results. Without this adaptivity, the results would either be wrong, or
the model would not make physical sense.
Since a diffusion process in general has rapid changes in the beginning where
for example high frequency variations are dampened and very slow conver-
gence to a steady state later, we have introduced a test of the amount of
change between two subsequent time-steps. If this amount is smaller than
some limit, we will increase the time-step.
This increase should be done in a more elegant manner(linearly?)

4.3 Computational cost

This chapter will consider the expensive parts of the code and look at possible
improvements.

72 Software Chapter 4

4.3.1 Memory

The memory-expensive parts of the code include storing the decomposed
matrices, and storing the random walkers. None of these pose any problems.

4.3.2 CPU time

The program as it stands now (v 1.∞) uses the BE discretization and a highly
specialized tridiagonal solver. The random walk-part of the software has
been excreted as a stand-alone program which communicates with the main-
program through a binary .xyz file containing the positions of all walkers
in 3d space. This makes it easier to change solver, and implement more
advanced solvers like the Direct Simulation Monte Carlo (DSMC) Molecular
Dynamics (MD) simulator written by Anders Hafreager (see chapter 7.3.2).
There are three expensive operations in the algorithm as it stands now with
the BE discretization using standard LU-decomposition.

• Random walks are expensive if there are many walkers. The number
of calls to the random number generator follows eq. (4.1) and for the
verification process, which required a lot of walkers, this represented a
considerable cost.

Ncalls ∝ Hc
(x1 − x0)

∆x

(y1 − y0)

∆y
T̃ (4.1)

where T̃ denotes the number of time steps on the PDE level times
the number of time-steps one PDE-step corresponds to on the RW
level. Note that this expression will NOT be zero in 1D, and that it
is dependent on the PDE-solution. As an additional problem we will
encounter some overhead upon calling the program, initializing vari-
ables and instances and so on. The computationally most demanding
function seems to be the round-off function, which is used to place the
walkers on the coarse-grained PDE-mesh.

• Communicating the positions of all the walkers between the two pro-
grams each time-step is very costly.

• Translating the positions of the walkers from the unit-square they are
walking on to the coarse-grained PDE grid requires calling the “round”
function from the math library in C++. This function is rather slow,
and the program suffers from it.

Section 3 Computational cost 73

4.3.3 Parallelizability

In the final algorithm there are the following stages

• Initialization
Read parameters from command-line, initial condition and diffusion
“tensor” from file. Setup instances of solvers etc. Practically no point
in parallelizing this.

• Forward sweep
As is explained in section 2.4.5 the solution is done by a forward and a
backward sweep of the mass matrix. Since the forward sweep is both the
most computationally intensive and independent of time it can be done
just once and stored for future use. The forward sweep consists of two
matrix-matrix multiplications and one matrix inversion, all of which
require some O(N3) FLOPs depending on what algorithm is used. N
is here the size of the block matrix in the mass matrix, typically nd−1

where n is the spatial resolution and d is the spatial dimension.

• Solving
This step includes a backward sweep of the mass matrix, only consisting
of matrix-vector multiplications and additions which are not computa-
tionally intensive. It also includes the random walk part which is both
expensive (depending on the number of walkers left) and highly par-
allelizable. We also write stuff to file which is quite costly. This is
probably not possible to parallelize.

Parallelization of the random walk solver should scale linearly because the
only form of communication required is shared memory. Solving the linear
system might be parallelizable, but will not scale linearly due to communi-
cation. This step is not the bottleneck at this point.

4.3.4 Some fancy title about changing stuff

It should be rather simple to replace parts of the code as long as certain
conditions are met. Perhaps the simplest part to replace is the random walk
part. Requirements for this part are:

• Locating executable main-file of the program in the folder “stochastic”
and naming it “walk_solver”.

• This executable should read the filename of the ini-file containing the
positions of all walkers , and the local diffusion “tensor” in the relevant
area.

74 Software Chapter 4

• Upon completion, all positions must be written to the same file.

The PDE-solver should also be rather simple to replace, but some more
programming will be required. First of all your solver must be included in
the header-file. Next, the “Combine” class has an instance of the PDE-solver
which it calls the advance-method of at each time-step. Seeing as this method
is most regularly named “solve” you will either have to rename the method
or the call. There are really very few dependencies on the PDE-solver, seeing
as it is mostly left alone, but in addition to being able to respond to function
calls it must:

• Have its own ∆t attribute named “dt”.

• Work on “double**” data types for all spatial dimensions (or implement
some form of workaround)

• Be able to respond to increasing the time-step. In practice this means
that the solver should be implicit.

As discussed, the implementation of random walks on parts of the mesh will
reduce the convergence-rate to 0.5, and so there are really only two reasons
to implement a new PDE solver. The current one only implements Neumann
boundaries, and consequently must either be modified or replaced in order to
work with other boundary conditions. It also only works on a square mesh.
As discussed in section 2.6 it will be immensely complicated to implement a
grid transformation, and this is already implemented in most finite element
software.

4.4 Numerical model
The numerical model of the PKCγ diffusion problem is implemented as fol-
lows. In the same way as Craske et.al [2] a section of dendrite will be modeled
by one-dimensional diffusion. This dendrite section is thought to be in con-
tact with the cell soma, and to have some spines on it. The soma is modeled
as a source at the one end of the dendrite section, whereas the other end of
the dendrite section is thought to continue branching into narrower and nar-
rower dendrite branches. The branching and the rest of the dendrite will not
be modeled in the beginning at least, because the situation in thin branches
is thought to be the same as in thick branches with a time-delay and some
effects due to a higher surface to volume ratio, all of which are described by
Craske et.al. Note that although the diffusion coefficient of PKCγ is known,
the actual diffusion from the cell soma and into the dendrite is much faster

Section 4 Numerical model 75

because of membrane binding. This effect becomes obvious when studying
the videos referred to by Craske et.al. in which a concentration increase
some 40µm from the cell soma takes only a few seconds bu would have taken
several hours in a normal diffusion process with the respective diffusion co-
efficient. The simulations take this into account by constructing a random,
small concentration over the entire dendrite and a larger peak close to soma.

Dendritic spines are modeled as a two-dimensional funnel attached to
the dendrite at some number of mesh-point which must correspond to the
typical range of spine-neck diameters. This limits the spatial resolution by
demanding the narrowest spine necks to connect at two mesh-points (in order
for the spine to be two-dimensional). The other parameters on a spine are
set randomly, but chosen so they correspond to values reported by Arellano
[1].

The model can without very much effort be extended to model an entire
neuron with a dendrite tree (some modification to the dendrite class is re-
quired in order to add a dendrite to an existing dendrite) by making a neuron
class containing a dendrite tree linked list and possibly a soma object should
one wish to model the soma individually. Other possible extensions include
adding and removing spines according to the rules proposed by (artikkelen
Gaute snakket om) in order to investigate how this affects various diffusion
processes in dendrites or dendrite trees. Recall that the possibility to add
spikes in spines is already built-in.

4.4.1 Parameters

As is the general problem in computational neuroscience this project requires
setting a lot of parameters whose values are not known. There are of course
a lot of parameters with known values as well, like the diffusion coefficient
for PKCγ. A summary of the parameters of particular interest is shown in
Table 4.1, with an indication of where the values are taken from, if they are
calculated or if they are simply given a value to ensure reasonable behaviour.

76 Software Chapter 4

ParameterExplanation Expression/
typical
value

Origin

∆t time-step ∆x2 stability criterion (sect.
2.4.3)

∆x spatial resolu-
tion

1
2
min(spine

neck diame-
ter)

estimated

Hc conversion fac-
tor

5-24 estimated by calculations of
concentration levels taken
from [8] and spine/dendrite
volume ratios. See later for
discussion.

u(t = 0) initial condition
value

5nMol
L estimated from values found

in [8]
pds probability to

diffuse into a
spine

0.1 ·∆x ·∆t estimated. An important
ability of this parameter
should be that wide necked
spines have larger probabil-
ity and that a certain flux
is maintained (on average),
meaning that the flux should
be independent of ∆t

pab probability for
PKCγ to be
absorbed, and
removed from
simulation, per
time-step taken
in spine head

100% estimated

Table 4.1: Parameters which play an important role in the simulation of
PKCγ diffusion into dendritic spines with explanations, expressions/typical
values and an indication as to where the value/expression has its origin.

The conversion factor Hc which was defined in equation (2.45) must also
take reasonable values in the simulation, and this might mean changing it
to another expression. Light et.al. [8] state that the concentration of con-
ventional PKC which PKCγ is a part of, is typically 20nMol

L in cardiac cells.
There is reason to believe that these values are typical for all cells. Since
there are four conventional PKC types (α, βI , βII and γ), the assumption

Section 4 Numerical model 77

that PKCγ makes up for a quarter of this concentration (5nMol
L) is made.

The dendrite is already being modeled as a one-dimensional object, meaning
that it is assumed to be much wider than a spine. Wide dendrites can have a
diameter of around 10µm and around 50µm long before they start branching
[wikipedia??], making the volume some 3900µm3.

The unit nMol
L is converted to more manageable units below

1
nMol
L

= 10−15nMol
µm3

= 10−24 Mol
µm3

' 0.6
particles
µm3

Craske et.al. measured an increase of 5nMol
L in the spine heads they were

investigating [2] which, using numbers from [1] for average spine volumes,
is roughly one PKCγ particle. In the simulations, this means that the total
available concentration at the contact-point between the dendrite and a spine
must exceed one particle. Assuming that the dendrite is cylindrical gives a
cylinder volume segment with height equal to the neck width of the spine in
question in which a concentration equal to at lest one particle must be present
before any diffusion into the spine can take place. This makes Hc ∈ (5, 24)
since that is the way we have defined Hc. In other words, the integrated
concentration must exceed some value defined either directly by the spine
neck width or some average neck width depending on how much control we
want to have over Hc.

The initial condition is open to discussion, but at the moment a skewed
Gaussian function i used with a peak value between 1 and 5. Release of PKCγ
into dendrites is followed by binding of PKCγ on the dendrite-wall, but in
any case this resembles simply removing some portion from the simulation.
This step can just as well be dropped, seeing as it does not provide any
extra information, and so only some initial pulse is required. The Gaussian
distribution is chosen for simplicity.

All values in the simulations are scaled to reduce round-off errors. Posi-
tions are measured in µm, concentrations in nMol/L or as particle-numbers
when in spines. Only the timescale has normal units of seconds. Craske et.al.
did experiments on the scale of < 3min, but most of the simulations go for
even shorter times.

Chapter 5

Results

79

80 Results Chapter 5

5.1 Validity of the model

Section 2.3 shows that a random walk can be described by the Gaussian
distribution and that it satisfies the diffusion equation as well as deriving the
diffusion equation from a random walk. Mathematically these models are
considered equivalent in the limit of sufficiently many walkers. This limit is
defined by the time step as

N ≥ 1

∆t2
(5.1)

Figure 3.13b verifies that given a sufficient amount of walkers, the conver-
gence in time is unaffected by the walkers. Thus supporting the claim that
the models are equivalent, and that they can be combined in a meaningful
way.

For all practical purposes, however, the demand for walkers is too high,
and will generally only be met for verification purposes. This is no problem,
since the models were combined to study effects from both length scales,
which would not be meaningful to study if the demand for walkers is met.

In other words, the model converges to the continuum model in the limit
of sufficient walkers, but this limit is seldom met.

5.2 Diffusion times into spines

Craske et.al. suggest that the neck of spines act as diffusion barriers which
slow down, but don’t completely stop the diffusion of PKCγ into spines.
The function of this barrier is a bit unclear, but the presence of it is undis-
puted. In their measurements they found a delay of around 5 − 10 seconds
from elevated concentration levels in the dendrite until a similarly elevated
concentration level occurred in spines with necks longer than 0.5µm. Using
parameter values which resemble the values found in actual (rodent) neurons
and neurites in the developed software, the observed delay-times have been
recreated. Figure 5.1 shows plots of the observed diffusion times into spines.
This figure shows a clear trend for longer diffusion times as the neck length
of the spine increases. Figure 5.2 further support this claim and implies the
average diffusion time for PKCγ into long necked spines to be of accordance
to the results from Craske et.al. Seeing as there are no additional complex-
ities added to the random walk model we can assume that the spine neck
does in fact function as a diffusion barrier.

Section 2 Diffusion times into spines 81

0.0 0.2 0.4 0.6 0.8 1.0 1.2
spine neck length [um]

0

5

10

15

20

25

30

35

40

to
ta
l d

iff
us
io
n
tim

e
[s
]

observed
lstsq fit

(a) Absolute diffusion times.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
spine neck length [um]

0

5

10

15

20

25

30

35

40

di
ffu

si
on

 ti
m
e
[s
]

observed
lstsq fit

(b) Relative diffusion times.

Figure 5.1: Absolute (a) and relative (b) diffusion times into spines. The
lines represent a least squares fit of the results. This least squares fit should
have been done after removing outliers and should have an expression written
out somewhere.

10

5

10

15

20

25

30

35

40

di
ffu

si
on

 ti
m
e
[s
]

diffusion times for spines with neck length > 0.5 um

Figure 5.2: Boxplot of the relative diffusion times (time between elevated con-
centration in dendrite and elevated concentration in spine head) into spines
with necks longer than 0.5µm. Similar studies were done by Crase et.al.
and found diffusion time (unclear whether relative or not) to be somewhere
around 5-10 seconds.

Through the simulations it became apparent that there must be some sort
of limiting factor which limits the number of PKCγ particles that are let into

82 Results Chapter 5

the spine. In real life this is achieved by a concentration gradient which tends
to zero (or negative values) meaning that no particles will diffuse into the
spine after it is “filled” up. A random walker will not feel this concentration
gradient unless it is explicitly told so. The alternative solution then, is to
reduce the probability for particles to diffuse into a spine for each particle
that get caught in the spine head by some reasonable factor.

Chapter 6

Discussion

83

84 Discussion Chapter 6

6.1 Properties of the model
In many ways this model has its strength in its simplicity and ease of added
complexity. By separating the two solvers, and having the possibility to run
them both individually, changing one of them will not affect the other. Of
course, added complexity often means added overhead by having to initialize
more variables and parameters. This must be solved by adding functionality
to the class in charge of running the two solvers and combining their results,
which is considered a simple task.

The weakness of the model is mainly the geometry question. As has
been mentioned before, the current version only supports quadratic meshes
which of course limits the possible applications of the model. One possible
workaround which has been suggested consists of changing the PDE solver
to a finite element solver. However, this is associated with a large workload,
and for some FEM software it will be nontrivial to map mesh points from
the PDE solver to the RW solver.

Installation of the Armadillo linear algebra library is required for the BE
scheme to work. This scheme is highly recommended to use both because
it is the most well-tested solver, and because there is no stability criterion.
Compiling the code without Armadillo installed requires some changing and
exclusion of the code.

6.1.1 Mass conservation

As the model stands now, it can guarantee conservation of mass while switch-
ing between the microscopic and macroscopic to a certain point. For each
PDE mesh point the concentration is converted to an integer via the conver-
sion factor by the previously mentioned relation

Cij = Hc · Uij
This is rounded to the nearest integer which gives the only uncertainty in
mass conservation. At each PDE mesh point there is a possible difference of
Hc± 0.5 from the macroscopic to the microscopic scale. Expressing this by
a residual gives

R = (Cij −Hc · Uij ± 0.5)N

where N is the number of mesh points. This means that the maximum
difference in mass should be something like

R =
N

2Hc

Section 2 The results 85

For verification purposes, this is usually very good, say R << 1%. For
actual simulations however, the difference could potentially be somewhat
lager.

6.1.2 Coupling between length scales

Flekkøy et.al. have done something similar to this thesis in 2001 [4], but
used a different coupling scheme than the approach used in this thesis. Their
approach, while similar to this one, separates the two models more, and
keeps the microscopic simulation going without recalculating the distribution
at each macroscopic time step. The coupling between length scales is done
by exchanging fluxes between the two length scales as a source term at two
different positions.

6.2 The results
The model gives fairly good results for the application on PKCγ into spines
which largely are in agreement with the results by Craske et.al. However, the
mean diffusion times found from simulations seem to consistently lie towards
the lower limits of the experimental results. One possible extension to the
model which might fix this is to introduce an absorption probability in the
spine head which is fairly large (say 80% per second), or even increases with
the amount of time spent in the spine head. A setup like this should increase
the average diffusion time by a few seconds. It does not, however reflect the
physical process to a better accuracy seeing as a concentration increase in a
spine head will be measured quickly.

Chapter 7

Conclusion

87

88 Conclusion Chapter 7

This (last) chapter contains the conclusion and sums up what has been
done, what went wrong and finally suggests some future improvements and
extensions that would be interesting to implement.

7.1 Workflow

In summary this thesis has two parts; the implementation and testing of both
the PDE and RW models and the software which combines them, and the
implementation and simulations of the diffusion of PKCγ into spines - prob-
lem. The former has without doubt been the most time consuming, mostly
because of a bug which made the results appear correct without them being
so, but also because of several other minor bugs which resulted in redoing
most of the verifications several times.

Quite a lot of time went into assembly of the mass-matrix for the BE
scheme in 2D. This was also because of a small bug causing the boundary
conditions on one boundary to rely on the wrong parts of the previous time
step. Assembling a mass matrix for a 3D BE scheme will probably involve
some messy calculations, but is not considered difficult (since this has been
done on paper already).

7.2 The model

As was mentioned in section 5.1 the analysis suggests that the developed
model is stable and gives good results. The important detail which makes
the model work is to do the RW “integration” first, pass the result as input
to the PDE model and then solve the PDE by a method of choice. It is
unclear whether a finite element method will give as good results, but highly
probable seeing as it is the fundamental property of a diffusion process which
ensures this. Namely that a diffusion process will dampen fast fluctuations
more efficiently than slow fluctuations.

7.3 Future work

The developed model shows clear signs of being a first approach to the prob-
lem, and is in some ways a bit simple. Several improvements can be suggested
to create a more realistic model both with respect to the diffusion processes
on both length scales, and when it comes to the combination of the two

Section 3 Future work 89

models. This section will mention some of the improvements that can be
done.

7.3.1 PDE solver

Although there is a well expressed limitation to the accuracy of the model
determined by the stochastic term, there are a few possible extensions which
can be made to the PDE solver. Not all will necessarily improve the error
term, but might introduce other properties which are of interest.

Finite Element Methods

Finite Element PDE solvers are mathematically and implementation-wise
much more advanced than finite difference schemes. Depending on which
solver is implemented, this step will ensure that more complex (and realistic)
properties of a diffusion process like nonlinearity can be introduced with
relative simplicity. Another question is how this can be implemented in the
lower-scale model..
A finite element solver will also, as discussed in section 2.6, vastly simplify
the implementation of more realistic mesh geometries in more than 1D.

More accurate time derivatives

Experimenting with time derivative approximations that are better than first
order could also be interesting seeing as a second order convergence was
achieved by the similar model described in section 3.4.1. One example of a
more accurate approximation to the first derivative is listed in equation (7.1)
(no name has been found for this scheme).

∂u

∂t
≈ 3u(tn)− 4u(tn−1) + u(tn−2)

2∆t
(7.1)

Note that equation (7.1) does not include the right-hand side of the actual
equation and that this side will be evaluated at tn making the scheme implicit
and (hopefully) stable. The residual for the scheme proposed in equation
(7.1) is calculated below

90 Conclusion Chapter 7

R =
3u(t)− 4u(t−∆t) + u(t− 2∆t)

2∆t
− u′(t)

=
1

2∆t

[
3u(t)− 4

(
u(t)−∆tu′(t) +

∆t2

2
u′′(t)− ∆t3

6
u′′′(t)

)]
+ . . .

1

2∆t

[
u(t)− 2∆tu′(t) + 2∆t2u′′(t)− 8∆t3

6
u′′′(t)

]
− u′(t)

=
2∆tu′(t)− 4∆t3

6
u′′′(t)

2∆t
− u′(t)

= −∆t2

3
u′′′(t)

R ∼ O(∆t2)

A nice feature of this scheme is that it will result in the following linear
system

Mun = 4un−1 − un−2

which is very similar to the system already being assembled and solved by
the implemented BE scheme. Only a minor modification in the assembly of
the diagonal of M seems to be necessary, and this is a trivial change.

The actual benefit of introducing a better approximation to the time
derivative must of course be tested.

7.3.2 Lower scale models

In section 2.3.3 the argument that the Brownian motion model converges to
the Gaussian distribution was given for choosing the simple RW model. The
same argument can be made for most of the other possible models if they
do not possess any special capabilities like drift or anisotropy. However, the
argument is only valid in the verification phase when the number of walkers
(or whatever) is large. For the actual simulations the number of walkers (or
whatever) will typically be very small, and the central limit theorem does not
apply. This opens the possibility of adding a variety of lower scale models,
some of which will be mentioned below.

Variations of Random Walk

Although the current RW implementation supports some added complexity
like anisotropy and drift, there is always the possibility to make the algorithm
more complex. Of course, there is not much reason to do this without an
actual physical problem which results in some more complex RW algorithm,

Section 3 Future work 91

but finding these applications should not be to hard. For example, some
attraction/drift term could be added to simulate Coulomb-attraction.
As was mentioned in section 6.2, the results from simulating PKCγ diffusion
are good, but not perfect. An extension where walkers in spine heads do not
immediately get registered as a concentration increase might improve the
results. Another possibility is to model “wall-collisions” slightly differently
by introducing a delay time where the PKCγ particle is stationary for some
number of time steps after colliding with the spine neck. This approach will
most likely better reflect the actual physics of the process.

Alternatives to Random walks

This section will mention some alternatives to the random walk model used
in this project and discuss how realistic they are to combine with a diffusion
PDE as one goal in this project has been. Both applications towards com-
putational neuroscience and more general applications will be discussed.
These models are pretty complex with many details, and this project does
not in any way try to do more than introduce them. Further reading is cited
in the end of each section.

Molecular Dynamics

Molecular dynamics is the simulation of the dynamics of atoms and molecules
using classical, Newtonian mechanics in the sense that the molecules are
affected by a potential, and that the sum of forces describes the dynamics.
Their dynamics are then integrated forward in time, and used to describe
for example flow in nanoporous media. This means that the system is fully
described by the position and velocities of all the atoms. Of course, there
is a vast variety in the level of complexity here and we will only look at
the simplest example, namely the Lennard-Jones potential, eq. (7.2). This
potential consists of an r−12 term which denotes the Pauli repulsion at short
ranges, and an r−6 long range, attractive Van Der Waals term. The relative
distance between two atoms is denoted by r. The Lennard-Jones potential
is derived to simulate Argon in the Van Der Waals equation of state.

U = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(7.2)

It is possible to do simulations of flow in nanoporous materials using the
Lennard-Jones potential, although it is a far from perfect model, by only al-
lowing some of the atoms to move. This will result in a matrix of stationary
atoms, simulating a wall (note that there will still be forces acting from these

92 Conclusion Chapter 7

atoms), and a liquid inside this matrix.

There are two main problems with using molecular dynamics more or less
regardless of the application: It requires a potential which describes the forces
working on all molecules in the simulation. This part may be particularly
difficult when it comes to modeling macromolecules like proteins.
It might be really difficult to create the desired geometry for a simulation.

For diffusion purposes this model is extremely temperature dependent,
and not directly transferable to the diffusion processes described in this
project. Especially seeing as the diffusion coefficient is a derived quantity,
not a parameter to be specified.

Direct simulation Monte Carlo

Direct simulation Monte Carlo (DSMC) is a numerical method first devel-
oped by G.A.Bird to model low density gas flow. With some extensions it can
also model continuum flow and give results comparable to the Navier Stokes
equations. The DSMC method works by modeling molecules which represent
a large number of fluid molecules (or atoms) in a probabilistic manner.
DSMC has a lot of applications today varying from supersonic fluid flow
modeling to micro electromechanical systems to micro- and nano- porous
flow.

Compared to the molecular dynamics this method has the advantage
of adding general geometries with relative ease. There aren’t necessarily
any new problems with DSMC compared to RW other than complexity of
implementation, but it is primarily designed to model fluid flow.

For diffusion purposes this model is extremely temperature dependent,
and not directly transferable to the diffusion processes described in this
project. Especially seeing as the diffusion coefficient is a derived quantity,
not a parameter to be specified.

Appendix A

Appendix

93

94 Appendix Chapter A

A.1 Various calculations
In this appendix some more tedious and rather boring, but no less impor-
tant calculations can be found. We will also list some algorithms that are
important, but not quite in the scope of this thesis.

A.1.1 Backward Euler scheme in 2D

Using the BE discretization on the simple 2D diffusion equation will yield
the general scheme in equation A.1.

uni,j =
−D∆t

∆x2︸ ︷︷ ︸
α

(
un+1
i+1,j + un+1

i−1,j

)
+

(
1 +

2D∆t

∆x2
+

2D∆t

∆y2

)
︸ ︷︷ ︸

γ

un+1
i,j −

2D∆t

∆y2︸ ︷︷ ︸
β

(
un+1
i,j+1 + un+1

i,j−1

)
(A.1)

This can, again, be written as a linear problem where the vectors are simply
the matrices un and un+1 written as column vectors. The matrix is written
out for a 3× 3 grid with no-flux Neumann boundary conditions in equation
A.2. We see that it is a five-band diagonal matrix, and so the tridiagonal
solver cannot be used in this case. It is fully possible to use for example
a Gaussian elimination in order to solve this equation, but it will require
2
3
O(n3) operations per time step, where n is the size of the matrix (in this

case n = 9). Another way to solve this equation, and by extension use the
BE scheme, is to use some form of sparse LU decomposition.

γ −2β 0 −2α 0 0 0 0 0
−β γ −β 0 −2α 0 0 0 0
0 −2β γ 0 0 −2α 0 0 0
−α 0 0 γ −2β 0 −α 0 0
0 −α 0 −β γ −β 0 −α 0
0 0 −α 0 −2β γ 0 0 −α
0 0 0 −2α 0 0 γ −2β 0
0 0 0 0 −2α 0 −β γ −β
0 0 0 0 0 −2α 0 −2β γ

un = un+1 (A.2)

When we try to implement Neumann boundary conditions for grids that
are larger than 3 × 3 we come across a problem. Doing the matrix-vector
multiplication in equation A.2 reproduces the BE scheme with boundary
conditions perfectly. However, if we extend to a 4× 4 grid using a matrix on
the same form we will start producing equations which will not arise from
the scheme. This is illustrated in eqs. A.3 and A.4. Moving the off-diagonal
entries with α one more column to the right and left will solve the problem,

Section 2 Debugging 95

but this will force us to use some more general solver of a sparse linear system.
All in all we will probably be better off using another scheme (at least in 2D).
The first equation that arises from the BE scheme in 2D (where i = j = 0)
is

un0,0 = γun+1
0,0 − 2αun+1

1,0 − 2βun+1
0,1 (A.3)

while the first equation produced by the linear system in the 4× 4 case is

un0,0 = γun+1
0,0 − 2αun+1

0,3 − 2βun+1
0,1 (A.4)

which is an equation that will never be produced by the BE scheme. In the
3×3 grid-case the off-diagonal matrix entries with α are on the third column
before and after the diagonal.

Moving the corresponding entries to the fourth column in the 4× 4 case,
and similarly to the n’th column in the n× n case will fix the problem, but
also increase the complexity of the matrix seeing as it will be n + 2 band
diagonal.
Extending the model to three spatial dimensions gives a very similar matrix
to the 2d-case.

D00 −2βI 0 −2αI 0 0 0 0 0
−βI D01 −βI 0 −2αI 0 0 0 0

0
. 0 0

. . . 0 0 0
−αI 0 0 D10 −2βI 0 −αI 0 0

0
. . . 0

. 0
. . . 0

0 0 0 −2αI 0 0 Dn0 −2βI 0

0 0 0 0
. . . 0

.
0 0 0 0 0 −2αI 0 −2βI Dnn

un+1
00k

un+1
01k

. . .
un+1

10k

. . .
un+1
n0k

. . .
un+1
nnk

= un

(A.5)
In equation A.5 I denotes the n×n identity, Dij denotes the tridiagonal n×n
matrix with entries similar to the ones in eq. A.1, and off-diagonal entries
similar to the ones in eq. A.1. All 0’s denote the n × n zero-matrix. The
values α and β are the relevant coefficient matrices for the calculations in
question. These will be diagonal as well (or simply numbers in the isotropic
case). Note also that the vector entries un+1

ijk are column vectors, making the
vector un+1 have the shape 1× n3.

A.2 Debugging
In any project which involves programming one is bound to do some debug-
ging. This project is no exception. Debugging can be extremely frustrating

96 Appendix Chapter A

because no-one sees all the hours that go into finding the bugs, only the
ones that do not (when the bug is not fixed). This section will deal with
some general techniques for debugging finite difference solvers and random-
walk implementations and some special words on how to debug the software
developed to combine the two solvers.

A.2.1 Compiler/syntax errors

If you are programming in a compiled language like fortran or C/C++ you
will forget some syntax, or misspell it, use a compiler-flag that outputs as
much info as possible to terminal (-Wall for the gnu compiler), and start
with the errors you understand. If you are building a larger project which
requires linking, remember that packages must be linked in the correct order.
For example; the armadillo linear algebra library is backened by LAPACK
and BLAS. Both these libraries must be linked as well and they must be
linked in the following order:

g++ ∗ . cpp −o myprog −O2 − l a r m a d i l l o − l l a p a c k − l b l a s

Anything else will give very cryptic compiler errors.
If you are using an interpreted language like python or MatLab the interpreter
usually gives extensive information about the errors you have done, read them
thoroughly!

A.2.2 Segmentation faults

In an interpreted language you will be told exactly where and what is wrong,
in compiled languages you will not unless you are using extensions that give
you some more information like armadillo. Segmentation faults are often
quite simple to find, and most compilers have some sort of debugger which
can help you find them. The gnu-compiler has an environment called gdb
in which you can run your program which will catch seg.-faults and tell you
where they are. If you are using some advanced editor like qt creator you
can also easily place breakpoints in your code where you can get information
about the various variables, instances, attributes etc. of your code at the
exact time of the break. You can also step through the code. thoroughly
Some times though the thing that works best is to print things at various
places. I like having the possibility that every function in my code can print
its name when it is called. There are even some python modules which tells
you where it was called from. This will make it very easy to find out when
the code went wrong, and what function is the problem.

Section 2 Debugging 97

A.2.3 Finite difference methods

First and foremost: Have a correct discretization. There are (probably)
webpages which can discretize your equation(s) for you, but it is almost
always useful to do this by hand. It will help you in your further debugging.
There is one very important rule in programming in general: “First make
it work, then make right, then make it fast”. For implementing FDMs this
means that you should start coding as soon as you have a clear image of
what to be implemented, and what dependencies are needed. You will need
a well defined initial condition (preferably one where you have the exact
solution of the equation) and boundary conditions before you start coding.
Personally, I like starting with the simplest Dirichlet boundary conditions
u|∂Ω = 0 and make them work before I go any further. You should note,
however, that implicit schemes will be greatly influenced by the choice of
boundary conditions.
Visualization is invaluable during debugging, seeing as a plot will let you see
when and where the error occurs. Show some example Most likely you will
now have something wrong with your solution (if not, cudos). This is where
you look over your discretization again to make sure that it is correct, and
then look over your implementation to check that it actually does what you
think it does. At this point I would like to introduce rubber-duck debugging
which was invented by the C-developer Dennis Ritchie. The story goes that
he would keep a rubber duck at his desk and whenever he was stuck, would
describe the code in detail (what each statement did and was supposed to
do) to the rubber duck. Asking questions often reveals a lot of information.
Personally I like my rubber duck to challenge me, so I prefer to involve a
friend, but the concept is the same.
When your code seems to reproduce the intended results it is time to start the
verification. This is where we make an error estimate and do some numerical
analysis (you should of course have checked for the numerical stability of your
chosen scheme when you discretized it). Making sure your implementation is
correct is a lot harder than it sounds, but there are a few points that should
be fulfilled:

• Manufactured solution
Find some function which fulfills the equation you are working with.
Remember that you have a source term which can be whatever you
want it to be at this point, meaning that you can more or less decide
what solution you want to your equation.

• Stationary solution
This boils down to energy-conservation. If the initial condition is a con-

98 Appendix Chapter A

stant, there should be no time-dependencies (assuming your boundary
conditions match; an initial condition u = 1 with Dirichlet boundaries
u|∂Ω = 0 will not work), and the solution will be constant.

• Exact numerical solution
For a fitting initial condition (and discretization) you will be able to
find an exact solution to the discretized equation you are implement-
ing. An example of this is found in chapter 3.2.3. Your scheme should
reproduce this solution to more or less machine precision. Note that
you might run into round-off errors and overflow here in some cases
(again, see chapter 3.2.3).

• Convergence test
The discretization that is implemented will have some error term de-
pendent on a discretization parameter (usually ∆t, ∆x or some pa-
rameter h used to determine the other discretization parameters) to
some power. This power will determine the convergence rate of the
numerical scheme, and you should verify that your implementation has
the expected convergence. A convergence test is another way of saying
that reducing the discretization parameter should reduce the error by
the expected ammount. For a first order scheme the error should be
halved by halving the time-step where as a second order scheme will get
a reduction of 1

4
for the same havlving of the discretization parameter.

There are probably more ways to make sure that a finite difference scheme
is working properly, but the ones listed will usually give a good implication.

A.2.4 Random walk and Monte Carlo methods

The main difference between debugging a MC based solver and a determinis-
tic solver is the fact that you often do not have a clear idea of what the results
of the intermediate steps should be. What you might know (or should know
during development), however is the result of the complete MC integration,
and some statistical properties of your random numbers. Using uniformly
distributed random numbers will give you a certain mean and standard de-
viation, and a Gaussian distribution will give you another. You should check
that the random number generator (RNG) you chose actually reproduces
these properties to a reasonable precision. If you are working with random
walkers it also helps to look at the behavior of a small number of walkers, to
check that they behave more or less as you expect. One thing to look out for
is the fact that a random walker in both one and two spatial dimensions will

Section 2 Debugging 99

fill all space given enough steps. Of course enough steps is infinitely many,
but if you also implement reflecting boundaries and use some 4-5 walkers you
will see a tendency after approximately 104 steps.
As we have discussed earlier the fluctuations in a MC-model are usually of a
magnitude 1√

N
this is also smart to verify.

Finally, you should absolutely have the possibility to set the random seed and
check that two runs with the same random seed produces the exact same re-
sult and makes sure you are using a RNG with a large enough period. The
xor-shift algorithm by Geroge Marsagla [] has a period of around 1048 which
usually is more than adequate.

A.2.5 The developed software

For some 2 months while working with this project I got really good results
which seemed to verify all the important parts of the theory. Unfortunately
it turned out that, while individually both parts of the program did exactly
what they were supposed to do (verified by various tests), the combination of
the two parts was implemented wrong. What actually happened was a finer
and finer round-off rather than taking some number of steps with random
walkers and combining the two models. It turned out that I sent an empty
array to the random walk class as a new initial condition for the current
time-step.
The moral behind this little story is that you should make 100% sure that
every part of every function you write does exactly what you think it does,
and nothing else. Furthermore, if you rewrite your code, you should remove
the old parts as soon as possible. If you use some kind of version control
software, which you definitely should, you will have older versions saved in
the version control anyways. Do not be nostalgic and simply comment out
the old parts just in case something, this makes your code very messy, and
leaves the possibility of something slipping past you.

Another point to be made is that it will probably be helpful to construct
the different parts of your code in such a way that they can be run as inde-
pendently of each other as possible. As an example, both the PDE-solver,
its tridiagonal linear system solver and the spine object can with relatively
small changes to the main-file be run independently. This allows for easier
testing of the various parts of the code, and makes it more likely that the
code will be reused in other projects.

100 Appendix Chapter A

A.2.6 When you cannot find the bug

While debugging (or any other repetitive task involving your own work) it is
remarkably easy to become blind to your mistakes. The psychology behind
this is (probably) that you have a clear idea of what should happen in each
statement, and so you read that in stead of what the statement actually says.
When it comes to proof-reading you can supposedly read backwards word by
word, but can you do something similar when reading code? While I have
never tried reading my code backwards because a statement usually depends
on the previous statement, I have tried doing hand-calculations for almost ev-
ery statement. Although hand calculations do not always show where things
go wrong, they point out what variable or array entry etc. is wrong, and so
the previous calculations can be checked. For finite difference schemes one
can reduce the number of spatial mesh points to something manageable like
three or four, and then do the same calculations that you think the computer
does. If the solution is a matrix you can pinpoint the invalid matrix-entries
with this method.

Another very important point if you are stuck is to never use “nice” values.
If a parameter is set to zero or one just because it needs to be something,
the probability that a potential problem disappears because it cancels out
increases dramatically. Similarly, never do matrix calculations for 3 × 3
matrices. Use 4 × 4 matrices instead. The reasoning behind this is that
banded matrices might fool you on 3 × 3 matrices, making you think your
problem is tridiagonal when it in fact is n-band diagonal for example.

Bibliography

[1] Jon I Arellano et al. “Ultrastructure of dendritic spines: correlation be-
tween synaptic and spine morphologies”. In: Frontiers in neuroscience
1.1 (2007), p. 131.

[2] Madeleine L Craske et al. “Spines and neurite branches function as
geometric attractors that enhance protein kinase C action”. In: ().

[3] L Farnell and WG Gibson. “Monte Carlo simulation of diffusion in a
spatially nonhomogeneous medium: A biased random walk on an asym-
metrical lattice”. In: Journal of Computational Physics 208.1 (2005),
pp. 253–265.

[4] EG Flekkøy, J Feder, and G Wagner. “Coupling particles and fields in
a diffusive hybrid model”. In: Physical Review E 64.6 (2001), p. 066302.

[5] Bruce Graham, Andrew Gillies, and David Willshaw.

[6] Morten Hjorth-Jensen. “Computational physics”. In: Lecture notes (2011).

[7] Frederick James. “A review of pseudorandom number generators”. In:
Computer Physics Communications 60.3 (1990), pp. 329–344.

[8] Peter E Light et al. “Protein Kinase C–Induced Changes in the Stoi-
chiometry of ATP Binding Activate Cardiac ATP-Sensitive K+ Chan-
nels A Possible Mechanistic Link to Ischemic Preconditioning”. In: ().

[9] George Marsaglia. “Xorshift rngs”. In: Journal of Statistical Software
8.14 (2003), pp. 1–6.

[10] Charles Nicholson. “Diffusion and related transport mechanisms in
brain tissue”. In: Reports on progress in Physics 64.7 (2001), p. 815.

[11] Mathis Plapp and Alain Karma. “Multiscale finite-difference-diffusion-
Monte-Carlo method for simulating dendritic solidification”. In: Journal
of Computational Physics 165.2 (2000), pp. 592–619.

101

	Introduction
	The project
	Progress of the project
	What is computational neuroscience

	Some Theory
	Notation
	Physical scope
	Introduction to random walks
	Random walkers and Gaussian distribution
	More general Random Walks
	Choosing random walk algorithm
	Random walks and anisotropy
	Random walks and drift
	Pseudo-random numbers

	Some words about partial differential equations
	Finite Difference Methods
	Discretizing
	Stability
	Truncation error
	Tridiagonal linear systems

	Combining the two solvers
	Changing between length scales
	The algorithm
	Convergence rate
	Potential problems or pitfalls
	Relating step length to PDE time step

	Geometry

	Analysis
	Introduction
	The error estimate
	Verification techniques

	Verification of PDE solvers
	Manufactured Solutions
	Convergence Tests
	Exact numerical solution

	Testing the Random walk implementation
	Testing the combined solution
	A simplified version of the algorithm
	Introducing walkers
	Increasing the time step and the relative size of walk-area

	Software
	About
	Limitations

	Adaptivity
	Computational cost
	Memory
	CPU time
	Parallelizability
	Some fancy title about changing stuff

	Numerical model
	Parameters

	Results
	Validity of the model
	Diffusion times into spines

	Discussion
	Properties of the model
	Mass conservation
	Coupling between length scales

	The results

	Conclusion
	Workflow
	The model
	Future work
	PDE solver
	Lower scale models

	Appendix
	Various calculations
	Backward Euler scheme in 2D

	Debugging
	Compiler/syntax errors
	Segmentation faults
	Finite difference methods
	Random walk and Monte Carlo methods
	The developed software
	When you cannot find the bug

